Data Analysis Core
数据分析核心
基本信息
- 批准号:10480794
- 负责人:
- 金额:$ 30.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAgeAlgorithmsAtlasesAutomationBehaviorBiological AssayCalibrationClassificationComputer softwareConfidence IntervalsCuesDataData AnalysesData SetDevelopmentDimensionsDiseaseEyeFundingGleanGoalsGoldHigh Performance ComputingHistopathologyHumanImageIonsLinkMapsMathematicsMeasurementMeasuresMedical ImagingMethodsMicroscopyMiningModalityModelingMolecularMultilingualismMultimodal ImagingNormal tissue morphologyNormalcyOptical Coherence TomographyOrganOutputPancreasPatientsPhasePlayReportingResolutionSamplingScanningSourceSpecific qualifier valueSystemTechnologyTissue imagingTissuesTrainingTranslatingVariantVendorWorkanalysis pipelinebasecell typecomputerized data processingdata analysis pipelinedata exchangedata miningdata qualitydata visualizationdeep learningfile formatimaging facilitiesimaging modalityin vivoin vivo imaginginclusion criteriamicroscopic imagingmultimodal datamultimodalitynovel strategiesopen sourceparallelizationreconstructionscaffoldspatial integrationtissue mappingwhole slide imaging
项目摘要
PROJECT SUMMARY – Data Analysis Core. The VU-BIOMIC data analysis core (DAC) is tasked with
automation of the reconstruction and subsequent analysis of the acquired multimodal eye and pancreas tissue
imaging data. This is translated into four specific aims: (i) modality-specific data processing; (ii) data analysis
pipeline development for 2-D and 3-D molecular tissue mapping; (iii) map construction for establishing 3-D
molecular organization and function; and (iv) consortium coordination. In Aim 1, we will develop methods for
preparing acquired measurement data for subsequent spatial integration, analysis, and content mining, and to
remove any non-biological variation from the measurements prior to integration. In Aim 2, the DAC provides
rapid cues for data quality assessment and ongoing multimodal analysis as new data is integrated into the
atlases. Pre-analytically, we will develop data-derived sample inclusion criteria based on LC-MS/MS
measurements, combined with gold standard histopathology, to capture what is “normal” tissue. To enable data
mining of the massive 3-D multimodal spatially resolved datasets, accurate registration of multiple 2-D datasets
into 3-D volumes will be essential. We will build a high-resolution mono-modal 3-D scaffold, using pre-
measurement autofluorescence microscopy taken from every single tissue section. Furthermore, the 3-D data
and analysis outputs, reconstructed from serial sections, will be spatially linked (by means of 3-D-to-3-D
registration models) to the organ-specific in vivo and ex vivo 3-D scans to relate the acquired spectral data to
more commonly encountered medical imaging modalities. Data-driven image fusion will enable the empirical
discovery of potential correlative, anti-correlative, multivariate linear, and nonlinear relationships between
observations in the different modalities, and also provide a framework for estimating to higher spatial resolutions
as well as for out-of-sample prediction from one modality to another. The DAC will perform temporally resolved
analysis of the data to find how molecular content changes with patient age. In Aim 3, the map construction
phase, we will bring the third dimension to the varied data types that are measured and annotated. Data-driven
image fusion will be used to advance the 3-D maps beyond what can be gleaned from one technology alone,
including the application of IMS-AF-fusion-driven out-of-sample prediction. This will enable prediction of IMS
observations at cutting depths where no IMS is measured. This will effectively provide predictive up-sampling of
the 3-D tissue maps along the z-axis, building finer resolution 3-D volumes than would be possible with IMS
alone. In Aim 4, we will develop specifications for the open file formats used in this work, multilingual parsers to
ease access, and a URL-based Restful API to make (authorized) data exchange easy and accessible. We will
work with the consortium to build common coordinate atlases based on in vivo images and continue the work of
the currently funded project in specifying and developing easily disseminated file formats.
项目摘要 - 数据分析核心。 VU-BIOMIC数据分析核心(DAC)的任务是
重建和随后分析获得的多模式和胰腺组织的自动化
成像数据。这将转化为四个具体目的:(i)特定于模式的数据处理; (ii)数据分析
二-D和3-D分子组织映射的管道发展; (iii)建立3-D的地图构造
分子组织和功能; (iv)财团协调。在AIM 1中,我们将开发用于
准备获得的测量数据,以进行随后的空间集成,分析和内容挖掘,并
在集成之前,从测量结果中删除任何非生物差异。在AIM 2中,DAC提供
随着新数据集成到该数据质量评估和正在进行的多模式分析的快速提示
地图集。预先分析,我们将基于LC-MS/MS制定数据衍生的样本纳入标准
测量,结合金标准组织病理学,以捕获“正常”组织。启用数据
大规模3-D多模式的空间分辨数据集的挖掘,多个二维数据集的准确注册
将3-D体积成分至关重要。我们将使用Pre-
测量自动荧光显微镜从每个组织截面取。此外,3-D数据
从串行部分重建的分析输出将在空间上链接(通过3-D到3-D
注册模型)到特定器官特异性体内和Ex Vivo 3-D扫描,以将获得的光谱数据与
更常见的是医学成像方式。数据驱动的图像融合将实现经验
发现潜在的相关,反相关,多元线性和非线性关系
不同方式的观察,还提供了一个框架,以估算更高的空间分辨率
以及从一种形态到另一种方式的样本外预测。 DAC将执行暂时解决
分析数据以查找分子含量如何随患者年龄变化。在AIM 3中,地图构造
阶段,我们将将第三维带入测量和注释的各种数据类型。数据驱动
图像融合将用于将3-D地图推进到仅仅从一项技术中收集到的东西之外
包括应用IMS-AF融合驱动的样本外预测。这将实现IMS的预测
在未测量未进行IMS的切割深度的观察。这将有效地提供预测的上采样
沿Z轴的3-D组织图,构建最终分辨率3-D体积比IMS所能
独自的。在AIM 4中,我们将开发此工作中使用的开放文件格式的规格,多语言解析器
简化访问权限,以及基于URL的RESTFUL API,使(授权)数据交换变得容易且易于访问。我们将
与财团合作,根据体内图像建立共同的坐标图表,并继续工作
当前资助的项目指定和开发易于传播文件格式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey M Spraggins其他文献
Jeffrey M Spraggins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey M Spraggins', 18)}}的其他基金
Multimodal Imaging Mass Spectrometry and Spatial Omics for the Human Kidney
人类肾脏的多模态成像质谱和空间组学
- 批准号:
10701835 - 财政年份:2022
- 资助金额:
$ 30.77万 - 项目类别:
Vanderbilt University Biomolecular Multimodal Imaging Center for 3-Dimensional Mapping of the Human Kidney
范德比尔特大学生物分子多模态成像中心进行人体肾脏 3 维绘图
- 批准号:
10530867 - 财政年份:2022
- 资助金额:
$ 30.77万 - 项目类别:
Multimodal Imaging Mass Spectrometry and Spatial Omics for the Human Kidney
人类肾脏的多模态成像质谱和空间组学
- 批准号:
10515051 - 财政年份:2022
- 资助金额:
$ 30.77万 - 项目类别:
Vanderbilt University Biomolecular Multimodal Imaging Center for 3-Dimensional Mapping of the Human Kidney
范德比尔特大学生物分子多模态成像中心进行人体肾脏 3 维绘图
- 批准号:
10701832 - 财政年份:2022
- 资助金额:
$ 30.77万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 30.77万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 30.77万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 30.77万 - 项目类别:
Arginase-1 signaling after neonatal stroke
新生儿中风后精氨酸酶 1 信号转导
- 批准号:
10664501 - 财政年份:2023
- 资助金额:
$ 30.77万 - 项目类别: