Genetic Regulation of Skeletal Muscle Repair
骨骼肌修复的基因调控
基本信息
- 批准号:10477403
- 负责人:
- 金额:$ 27.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-07-15 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AgingAllelesBiological AssayBiologyBiopsyBrown FatCD36 geneCXCL12 geneCell CompartmentationCell LineageCell divisionCell surfaceCellsDataDeductiblesDevelopmentDiseaseDuchenne muscular dystrophyEngraftmentExhibitsExpression ProfilingGene ExpressionGene Expression ProfilingGenesGeneticGrowthHealthHeterogeneityHumanImmuneInformal Social ControlKineticsKnowledgeLabelMethodologyMolecularMolecular AnalysisMolecular GeneticsMusMuscleMuscle satellite cellMuscular AtrophyNatural regenerationNeuromuscular DiseasesPopulationPropertyRegulationRegulator GenesResolutionSkeletal MuscleSkeletal Muscle Satellite CellsTechnologyTestingTherapeutic InterventionTranslatingTransplantationWasting Syndromedifferential expressionexperimental studygenetic analysisgenetic signatureinnovationinsightinterestloss of function mutationmdx mousemouse modelmuscle regenerationnovelprogenitorprospectivereconstructionrepairedsatellite cellself-renewalsingle cell analysissingle-cell RNA sequencingstem cell biologystem cell functionstem cell homeostasisstem cell populationstem cellstranscriptome sequencingtranscriptomics
项目摘要
Project Summary
Satellite cells are required for the growth and regeneration of skeletal muscle. Molecular genetic analyses,
engraftment assays, and single-cell analyses have suggested that satellite cells are a heterogenous population
that potentially exhibit very distinct properties. Understanding satellite cell heterogeneity and identifying the
long-term self-renewing stem cell within the satellite cell compartment remains one of the most important
unresolved issues in muscle biology, and with the advent of technologies that facilitate single-cell analyses, is
currently attracting much interest. In preliminary experiments, we have used gene expression analysis to
define a gene signature for a subpopulation of satellite cells we term satellite stem cells. This gene signature
was then used to identify a novel cluster that contains this subpopulation using single-cell RNA-seq analysis.
Transplantation of satellite stem cells after isolation, using cell surface markers that we defined, indicate that
satellite stem cells exhibit markedly superior engraftment properties. Therefore, we hypothesize that satellite
stem cells represent the bona fide long-term self-renewing muscle stem cell. Here we propose to molecularly
characterize this important subpopulation and establish its hierarchal relationship with the larger population of
satellite cells and their progenitors. In Aim 1, we propose to characterize the function and potential of satellite
stem cells using lineage tracing and following transplantation of prospectively isolated satellite stem cells. We
will examine the expression of genes specifically expressed in satellite stem cells during asymmetric cell
divisions and lineage progression on cultured myofibers. These experiments will provide important new
information concerning the activity, potential, and function of satellite stem cells. In Aim 2, we will define the
cellular and molecular composition of satellite stem cell lineage hierarchy at the resolution of single cells. We
will use single-cell transcriptomics (RNA-seq) to delineate the differentiation trajectory of satellite stem cells
and their derivatives that arise during growth and regeneration using mice containing lineage tracing alleles,
and mice lacking genes that perturb regeneration. We will analyze the function of differentially expressed
regulatory genes using a novel high-content analysis platform. This data will allow reconstruction of the cellular
differentiation trajectories and provide important new information into the molecular regulation of self-renewal
and lineage progression. In Aim 3, we will identify and characterize human satellite stem cells by conducting
analysis of satellite cells isolated from human muscle biopsies. The notion that satellite cells are heterogenous
with a subset representing a long-term self-renewing stem cell remains controversial. Our discovery of a gene-
signature specific to satellite stem cells is therefore innovative and paradigm shifting. In particular, the
identification of cell surface markers specific to satellite stem cells will without question, facilitate rapid
advances in our understanding of the molecular mechanisms that regulate satellite stem cell homeostasis in
human muscle wasting diseases and in aging.
项目摘要
卫星细胞是骨骼肌生长和再生所必需的。分子遗传分析,
植入分析和单细胞分析表明,卫星细胞是异质种群
这可能表现出非常不同的特性。了解卫星细胞异质性并确定
卫星细胞室内的长期自我更新干细胞仍然是最重要的
肌肉生物学中未解决的问题,并且随着促进单细胞分析的技术的出现,
目前引起了很多兴趣。在初步实验中,我们使用了基因表达分析到
定义用于卫星细胞亚群的基因特征,我们称为卫星干细胞。这个基因签名
然后被用于识别一个新的簇,该簇使用单细胞RNA-seq分析,该群集包含该亚群。
分离后的卫星干细胞移植,使用我们定义的细胞表面标记,表明
卫星干细胞表现出明显的上植入特性。因此,我们假设该卫星
干细胞代表真正的长期自我更新肌肉干细胞。在这里,我们提出分子
表征这一重要的亚种群,并与较大的人群建立了层次关系
卫星细胞及其祖细胞。在AIM 1中,我们建议表征卫星的功能和潜力
干细胞使用谱系追踪和前瞻性分离的卫星干细胞移植后。我们
将检查在不对称细胞中特异性表达的基因的表达
培养的肌纤维的分裂和谱系进展。这些实验将提供重要的新
有关卫星干细胞活动,潜力和功能的信息。在AIM 2中,我们将定义
卫星干细胞谱系层次结构的细胞和分子组成在单个细胞的分辨率下。我们
将使用单细胞转录组学(RNA-SEQ)来描述卫星干细胞的分化轨迹
及其在生长和再生过程中使用的衍生物,使用含有谱系追踪等位基因的小鼠,
和缺乏扰动再生基因的小鼠。我们将分析差异表达的功能
使用新型的高含量分析平台进行调节基因。这些数据将允许重建细胞
分化轨迹并为自我更新的分子调节提供重要的新信息
和谱系进展。在AIM 3中,我们将通过进行识别和表征人类卫星干细胞
从人类肌肉活检中分离出的卫星细胞的分析。卫星细胞是异质的观念
代表长期自我更新干细胞的子集仍然存在争议。我们发现了一个基因
因此,特定于卫星干细胞的签名是创新的和范式转移的。特别是
识别特定于卫星干细胞的细胞表面标记将毫无疑问,促进快速
我们对调节卫星干细胞体内平衡的分子机制的理解的进步
人类的肌肉浪费疾病和衰老。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael A Rudnicki其他文献
Michael A Rudnicki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael A Rudnicki', 18)}}的其他基金
Molecular Mechanisms Regulating Stem Cell Plasticity
调节干细胞可塑性的分子机制
- 批准号:
6527874 - 财政年份:2001
- 资助金额:
$ 27.27万 - 项目类别:
Molecular Mechanisms Regulating Stem Cell Plasticity
调节干细胞可塑性的分子机制
- 批准号:
6797778 - 财政年份:2001
- 资助金额:
$ 27.27万 - 项目类别:
Molecular Mechanisms Regulating Stem Cell Plasticity
调节干细胞可塑性的分子机制
- 批准号:
6436604 - 财政年份:2001
- 资助金额:
$ 27.27万 - 项目类别:
Molecular Mechanisms Regulating Stem Cell Plasticity
调节干细胞可塑性的分子机制
- 批准号:
6653946 - 财政年份:2001
- 资助金额:
$ 27.27万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于等位基因非平衡表达的鹅掌楸属生长量杂种优势机理研究
- 批准号:32371910
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 27.27万 - 项目类别:
Role of DNA damage and cellular senescence in osteoarthritis pathophysiology
DNA 损伤和细胞衰老在骨关节炎病理生理学中的作用
- 批准号:
10801026 - 财政年份:2023
- 资助金额:
$ 27.27万 - 项目类别:
Investigating the role of telomere failure on intestinal stem cell niche function
研究端粒衰竭对肠道干细胞生态位功能的作用
- 批准号:
10678095 - 财政年份:2023
- 资助金额:
$ 27.27万 - 项目类别:
The Young Gut Microbiome: A Fountain of Youth for Brain Injury in the Aged?
年轻的肠道微生物组:老年人脑损伤的青春之泉?
- 批准号:
10806735 - 财政年份:2023
- 资助金额:
$ 27.27万 - 项目类别: