Biomaterial Implants for the Treatment of Disuse Muscle Atrophy
用于治疗废用性肌肉萎缩的生物材料植入物
基本信息
- 批准号:10476990
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAddressAdipose tissueAffectAgingAtrophicBasal metabolic rateBed OccupancyBed restBiocompatible MaterialsBiomedical EngineeringBlast InjuriesBody fatBone ScrewsChronic DiseaseComplementComplexComplicationDataDevice DesignsDevicesDisuse AtrophyDoseDrug Delivery SystemsElderlyEngineeringEtiologyExerciseFDA approvedFatty acid glycerol estersFormulationFoundationsFractureFrequenciesGastrocnemius MuscleGene ExpressionGlycolic-Lactic Acid PolyesterGoalsGrowthGrowth FactorHealth Care CostsHealthcare SystemsHindlimbHindlimb SuspensionHomeHospitalizationHospitalsHumanImmobilizationImpairmentImplantIndividualInflammationInjuryInnovative TherapyInsulin ResistanceInsulin-Like Growth Factor ILeadLegLeptinLifeLimb structureLocationMechanicsMetabolismMinorMonitorMorbidity - disease rateMusMuscleMuscle functionMuscular AtrophyNutritional SupportOutcomePainPatientsPhenotypePhysical therapyPhysiologicalProcessProductionQuality of lifeRecoveryRecovery of FunctionRehabilitation therapyResearchRiskSafetyScheduleSecondary toSiteSkeletal MuscleSkinSourceSpinal cord injurySupervisionSurgical suturesTechnologyTestingTherapeuticTimeTissue EngineeringTissuesTrainingTraumaVisceral fatWorkadipokinesadiponectinagedbiodegradable polymerbiomaterial compatibilityclinical translationcompliance behaviorcomputer monitorcostdesigndisabilityfunctional disabilityfunctional lossimplantable deviceimprovedindexinginjury recoveryinnovationlimb injurymouse modelmultiplex assaymuscle formmuscle metabolismmuscular structurenovelnovel strategiesphysically handicappedpolycaprolactonereduced muscle strengthregenerativerehabilitation strategyrelease factorresistance exerciseresponsesarcopeniascaffoldskeletal muscle wastingskeletal unloadingstrength trainingsubcutaneoussynergismtherapeutic target
项目摘要
Disabilities secondary to long term immobilization are a major cause of morbidity and escalating
healthcare costs for the VA. Immobilization is a complication of many conditions (e.g. limb injury, bed
rest) and results in mechanical unloading of skeletal muscles. In response to mechanical unloading,
muscles undergo a rapid loss of mass, referred to as disuse atrophy. Disuse atrophy prolongs the
rehabilitation period, increasing the risk that full functional recovery will not be achieved. The current
rehabilitation course for disuse atrophy encompasses resistance exercise paradigms designed to
promote muscle growth, but many VA patients with atrophy are advanced aged and too frail to
successfully complete the training. The inability to rehabilitate will spur a vicious cycle of decreased
activity and loss of mobility, impacting quality of life. Thus, rehabilitating atrophied muscle remains a
highly relevant therapeutic target. Systemic delivery of insulin-like growth factor 1 (IGF-1), as well as
other factors (e.g. leptin and adiponectin), increases muscle mass; however, systemic delivery is
hindered by cost, off target effects, and patient compliance with the dosing schedule. Recently,
bioengineers are addressing these issues with drug delivery systems that enable localized, sustained
release of a therapeutic. While these devices may prove successful to some extent, maximal
functional recovery is likely to require a more complex combination of factors delivered at
physiological concentrations over physiological timescales, which is difficult to achieve with current
technologies. To address these limitations, this work will develop devices to engineer the adipose
tissue, a readily available tissue source, to release factors in the most ideal proportions that promote
growth of atrophied muscle. Indeed, adipose tissues secrete biomolecules that act at the systemic
level. In order to modulate the adipose secretome, we have developed tissue engineering scaffolds
for implant into the adipose tissue using the biodegradable polymer poly(lactide-co-glycolide). This
material is used in FDA approved devices including sutures and bone screws. Scaffold implant into
visceral fat of mice elevates IGF-1 expression. Concurrently, gene expression involved in muscle
growth is activated in the gastrocnemius. This data motivates the hypothesis that specifically
designed scaffolds can promote a muscle-supportive secretome when implanted into fat and this
approach will enhance functional recovery in mice with disuse atrophy. Aim 1 of the proposed work
will improve our understanding of how the scaffold functions by investigating if alterations in the
adipose secretome is biomaterial specific. This aim will also advance the scaffold’s translational
relevance by determining if a muscle regenerative secretome exists when the implant site is
subcutaneous fat. Aim 2 will determine if scaffold implant in aged mice with atrophied muscle from
hindlimb immobilization enhances functional recovery after the leg is reloaded. Functional recovery is
quantified using computer monitored activity cages. Muscle structure, function, and inflammation will
also serve as indices of recovery. This mouse model recapitulates a common presentation and
phenotype of multiple etiologies seen in the VA and, combined with activity monitoring, allows for
relatively high throughput testing and proof of concept studies needed to advance the scaffold
technology. This innovative strategy has high potential for clinical translation as the materials have an
established safety record in humans and the proposed devices would be complementary and additive
to current rehabilitation strategies. This novel approach is expected to improve the rehabilitation of
hundreds of thousands of patients with, or at risk for long-term disability secondary to disuse atrophy.
长期固定的残疾是发病率和升级的主要原因
VA的医疗保健费用。固定是许多条件的并发症(例如,肢体损伤,床
休息),并导致骨骼肌的机械卸载。响应机械卸载,
肌肉会迅速丧失肿块,被称为废除萎缩。废除萎缩可以延长
康复期,增加将无法实现全功能恢复的风险。电流
废除萎缩的康复课程包括抗抵抗运动范式
促进肌肉生长,但许多萎缩率的VA患者已经衰老,过于脆弱,无法
成功完成培训。无法康复将刺激恶性循环
活动和流动性丧失,影响生活质量。那,康复的萎缩肌肉仍然是
高度相关的治疗靶点。胰岛素样生长因子1(IGF-1)的全身传递以及
其他因素(例如瘦素和脂联素)增加肌肉质量;但是,全身交付是
受到成本,关闭目标效果和患者遵守给药时间表的阻碍。最近,
生物工程师正在通过药物输送系统来解决这些问题,这些问题使局部,持续
释放疗法。尽管这些设备可能在某种程度上成功,但最大
功能恢复可能需要更复杂的组合在
物理时间尺度上的生理浓度,当前很难实现
技术。为了解决这些限制,这项工作将开发以设计脂肪的设备
组织是一种易于使用的组织来源,以最理想的比例释放因子
萎缩肌肉的生长。实际上,脂肪时机在系统性上作用的秘密生物分子
等级。为了调节脂肪秘密,我们开发了组织工程脚手架
使用可生物降解的聚合物聚(乳酸 - 糖苷)植入脂肪组织中。这
材料用于FDA认可的设备,包括缝合线和骨螺钉。脚手架植入
小鼠的内脏脂肪升高IGF-1表达。同时,肌肉中涉及的基因表达
在胃病中激活生长。该数据激发了以下假设
当植入脂肪中时,设计的脚手架可以促进肌肉支持的分泌组
方法将增强残疾萎缩小鼠的功能恢复。拟议工作的目标1
将通过研究是否在
脂肪分泌组为生物材料特异性。这个目标还将推动脚手架的翻译
通过确定植入物位置时是否存在肌肉再生性分泌物的相关性
皮下脂肪。 AIM 2将确定在老年小鼠的脚手架植入物中是否具有萎缩的肌肉
固定后,固定化可以增强腿后的功能恢复。功能恢复是
使用计算机监控的活动笼进行量化。肌肉结构,功能和炎症将
也是恢复指标。该鼠标模型概括了常见的表现和
在VA中看到的多种病因的表型,并结合活动监测,允许
相关的高吞吐量测试和概念研究证明,以推动脚手架
技术。这种创新策略具有临床翻译的高潜力,因为材料具有
在人类和拟议的设备中建立的安全记录将是完整的和附加的
目前的康复策略。这种新颖的方法有望改善
成千上万的患者患有或有长期残疾的危险,继发于萎缩。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of fabrication parameters on morphology and drug loading of polymer particles for rosiglitazone delivery.
- DOI:10.1016/j.jddst.2021.102672
- 发表时间:2021-07
- 期刊:
- 影响因子:5
- 作者:Spetz MR;Isely C;Gower RM
- 通讯作者:Gower RM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Michael Gower其他文献
Robert Michael Gower的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Michael Gower', 18)}}的其他基金
Biomaterial Implants for the Treatment of Disuse Muscle Atrophy
用于治疗废用性肌肉萎缩的生物材料植入物
- 批准号:
9890541 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Biomaterial Implants for the Treatment of Disuse Muscle Atrophy
用于治疗废用性肌肉萎缩的生物材料植入物
- 批准号:
10065434 - 财政年份:2020
- 资助金额:
-- - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The essentiality of serine and glycine for skeletal muscle regeneration in aging
丝氨酸和甘氨酸对于衰老过程中骨骼肌再生的重要性
- 批准号:
10341618 - 财政年份:2022
- 资助金额:
-- - 项目类别:
The essentiality of serine and glycine for skeletal muscle regeneration in aging
丝氨酸和甘氨酸对于衰老过程中骨骼肌再生的重要性
- 批准号:
10545739 - 财政年份:2022
- 资助金额:
-- - 项目类别:
BIOLOGICAL EMBEDDING OF SOCIAL DISADVANTAGE IN HUMAN STEM CELLS: IMPLICATIONS FOR HEALTH DISPARITIES
人类干细胞中社会劣势的生物嵌入:对健康差异的影响
- 批准号:
10710216 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Endogenous stem cells promote regeneration of muscle in rotator cuff repair
内源干细胞促进肩袖修复中的肌肉再生
- 批准号:
10595521 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Dissecting the cellular interplays of adipose tissue remodeling in the regulation of insulin sensitivity
剖析脂肪组织重塑在胰岛素敏感性调节中的细胞相互作用
- 批准号:
10526249 - 财政年份:2022
- 资助金额:
-- - 项目类别: