Efficient in Vivo RNP-based Gene Editing in the Sensory Organ Inner Ear Using Bioreducible Lipid Nanoparticles
使用生物可还原脂质纳米颗粒对感觉器官内耳进行基于 RNP 的高效体内基因编辑
基本信息
- 批准号:10470326
- 负责人:
- 金额:$ 163.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-18 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimal ModelAnimalsBiologicalBiological AssayCationsCellsCharacteristicsClinicClinicalDefectDetectionDiseaseEnvironmentEpithelialEvaluationEventFamily suidaeFormulationFreeze DryingGene DeliveryGene MutationGenesHair CellsHearingHumanIn VitroIndividualInvestigationLabyrinthLibrariesLinkLipidsLiposomesMediatingMethodsMicrofluidicsModalityModelingMusNeuronsNewborn InfantNonhomologous DNA End JoiningOrganOrgan ModelPhaseProcessProductionProteinsResolutionRibonucleoproteinsSensorySensory HairSomatic CellSpecificityStructureSystemTechnologyTestingTissuesToxic effectTranslationsWorkbasebase editingbiomaterial compatibilitycell typeclinical applicationclinical developmentcombinatorialdesigndisulfide bondeffective therapygenome editinghereditary hearing losshuman diseasehuman modelhuman tissueimprovedin vivoinnovationlarge scale productionlipid nanoparticlemalemouse modelnanoparticlenanoparticle deliverynovelporcine modelpreventscreeningtherapeutic genome editingtherapy development
项目摘要
Project Summary and Relevance
Application of genome editing based therapy requires efficient delivery of editing agents into disease-relevant
tissues and cells. Identification of novel delivery materials targeting somatic cells will greatly facilitate the
advance of editing based therapy strategies to clinic. We propose to screen a large library of novel lipid
nanoparticles for RNP (ribonucleoprotein) delivery of editing agents into the mammalian sensory organ inner
ear. Inner ear is an ideal sensory organ to develop new delivery strategies. It consists of multiple differentiated
somatic cell types without effective delivery options. Gene mutations in the major inner ear cell types have been
associated with genetic hearing loss, which affects one in 500 newborns and currently has no effective
therapies.
Lipid-based nanoparticle carriers have emerged as one of the most promising materials for delivery and have
been successfully used in clinical applications. We have developed a combinatorial library approach to
synthesize degradable lipid-like nanoparticles under reductive intracellular environments, and capable of
delivering biomolecules with high efficiency and low toxicity. The new bioreducible lipid nanoparticles
(bLNPs) have been used to deliver genome editing agents with high efficiency and low toxicity in vivo. We
have delivered genome editing RNP by cationic liposomes into mammalian inner ear in vivo, and rescued
hearing in mouse models of human genetic hearing loss. To develop editing based therapies to treat diverse
forms of genetic hearing loss, it is essential to develop a delivery strategy to target multiple inner ear cell types
simultaneously. The mammalian inner has a complicated structure with multiple cell types in small numbers,
making it particularly challenging to screen a delivery technology by conventional high-throughput strategies.
The lack of a method to detect editing at the level of the individual cell type further hinders our ability to apply
this technology in wildtype large animal models that are essential for development of this therapy for clinical
application. By combining our strategies to screen nanoparticles for delivery of editing materials to X-linked
genes in the male mouse inner ears in vivo, we will overcome these hurdles for effective delivery and editing in
diverse inner ear cell types. The study of the human inner ear tissues ex vivo will provide evidence of the
relevance of nanoparticle delivery in human disease-relevant tissues. Expansion of our work to large animal
models will be a major step towards clinical application of this technology. Our approach with nanoparticles
can be applied to the study in other organs requiring somatic cell type editing and in wildtype large animals.
项目摘要和相关性
基于基因组编辑的治疗的应用需要有效地将编辑剂递送到疾病相关的
组织和细胞。鉴定针对体细胞的新型递送材料将极大地促进
基于编辑的治疗策略提前到诊所。我们建议筛选一个大型新型脂质库
RNP的纳米颗粒(核糖核蛋白)递送编辑剂到哺乳动物感觉器官内部
耳朵。内耳是制定新交付策略的理想感官器官。它由多个差异化组成
体细胞类型没有有效的交付选项。主要内耳细胞类型中的基因突变已经
与遗传听力损失相关,这影响了500名新生儿,目前没有有效
疗法。
基于脂质的纳米颗粒载体已成为交付最有前途的材料之一,并具有
成功用于临床应用。我们已经开发了一种组合库的方法
在还原性细胞内环境下合成可降解的脂质的纳米颗粒,并且能够
提供高效率和低毒性的生物分子。新的生物治疗脂质纳米颗粒
(BLNP)已用于在体内提供高效率和低毒性的基因组编辑剂。我们
已通过阳离子脂质体将基因组编辑RNP输送到体内的哺乳动物内耳中,并被救出
在人类遗传听力损失的小鼠模型中听力。开发基于编辑的疗法以治疗多样化
遗传听力损失的形式,必须制定递送策略以靶向多种内耳细胞类型
同时地。哺乳动物内部具有复杂的结构,有多种细胞类型的数量很少,
通过传统的高通量策略筛选交付技术的筛查特别具有挑战性。
缺乏检测在单个单元类型级别的编辑的方法进一步阻碍了我们申请的能力
野生型大型动物模型中的这项技术对于开发临床疗法至关重要
应用。通过结合我们筛选纳米颗粒以将编辑材料交付到X连锁的策略
雄性小鼠内耳中的基因在体内,我们将克服这些障碍,以有效分娩和编辑
多种内耳细胞类型。人体内耳组织的研究将提供证据
纳米粒子在与人类疾病相关的组织中的相关性。将我们的工作扩展到大动物
模型将是该技术临床应用的主要一步。我们使用纳米颗粒的方法
可以在需要躯体细胞类型编辑和野生型大动物的其他器官中应用于研究。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Clinical progress in genome-editing technology and in vivo delivery techniques.
- DOI:10.1016/j.tig.2022.12.001
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Jennifer Khirallah;Maximilan Eimbinder;Yamin Li;Qiaobing Xu
- 通讯作者:Jennifer Khirallah;Maximilan Eimbinder;Yamin Li;Qiaobing Xu
Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis.
- DOI:10.1073/pnas.2116271119
- 发表时间:2022-02-22
- 期刊:
- 影响因子:11.1
- 作者:Qiu M;Tang Y;Chen J;Muriph R;Ye Z;Huang C;Evans J;Henske EP;Xu Q
- 通讯作者:Xu Q
Protein and mRNA Delivery Enabled by Cholesteryl-Based Biodegradable Lipidoid Nanoparticles.
- DOI:10.1002/anie.202004994
- 发表时间:2020-08-24
- 期刊:
- 影响因子:0
- 作者:Li Y;Jarvis R;Zhu K;Glass Z;Ogurlu R;Gao P;Li P;Chen J;Yu Y;Yang Y;Xu Q
- 通讯作者:Xu Q
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zheng-Yi Chen其他文献
Zheng-Yi Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zheng-Yi Chen', 18)}}的其他基金
Development of CRISPR/Cas9-based exon-skipping strategies for the treatment of USH-associated deafness
开发基于 CRISPR/Cas9 的外显子跳跃策略来治疗 USH 相关耳聋
- 批准号:
10445638 - 财政年份:2022
- 资助金额:
$ 163.97万 - 项目类别:
Development of CRISPR/Cas9-based exon-skipping strategies for the treatment of USH-associated deafness
开发基于 CRISPR/Cas9 的外显子跳跃策略来治疗 USH 相关耳聋
- 批准号:
10688070 - 财政年份:2022
- 资助金额:
$ 163.97万 - 项目类别:
Development of Genome Editing as Treatment for Genetic Hearing Loss
基因组编辑治疗遗传性听力损失的进展
- 批准号:
10542663 - 财政年份:2019
- 资助金额:
$ 163.97万 - 项目类别:
Development of Genome Editing as Treatment for Genetic Hearing Loss
基因组编辑治疗遗传性听力损失的进展
- 批准号:
10288164 - 财政年份:2019
- 资助金额:
$ 163.97万 - 项目类别:
Development of Genome Editing as Treatment for Genetic Hearing Loss
基因组编辑治疗遗传性听力损失的进展
- 批准号:
10326343 - 财政年份:2019
- 资助金额:
$ 163.97万 - 项目类别:
Development of Genome Editing as Treatment for Genetic Hearing Loss
基因组编辑治疗遗传性听力损失的进展
- 批准号:
10066340 - 财政年份:2019
- 资助金额:
$ 163.97万 - 项目类别:
SCGE Disease Models Studies Supplement: Development of LNP-mediated based editing to treat Leber Congenital Amaurosis (LCA) for vision restoration in mouse model
SCGE 疾病模型研究补充:开发基于 LNP 介导的编辑来治疗莱伯先天性黑蒙 (LCA),以恢复小鼠模型的视力
- 批准号:
10620471 - 财政年份:2018
- 资助金额:
$ 163.97万 - 项目类别:
Efficient in Vivo RNP-based Gene Editing in the Sensory Organ Inner Ear Using Bioreducible Lipid Nanoparticles
使用生物可还原脂质纳米颗粒对感觉器官内耳进行基于 RNP 的高效体内基因编辑
- 批准号:
10387120 - 财政年份:2018
- 资助金额:
$ 163.97万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
NRSF表达水平对抑郁模型小鼠行为的影响及其分子机制研究
- 批准号:81801333
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 163.97万 - 项目类别:
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
- 批准号:
10638439 - 财政年份:2023
- 资助金额:
$ 163.97万 - 项目类别:
Novel application of pharmaceutical AMD3100 to reduce risk in opioid use disorder: investigations of a causal relationship between CXCR4 expression and addiction vulnerability
药物 AMD3100 降低阿片类药物使用障碍风险的新应用:CXCR4 表达与成瘾脆弱性之间因果关系的研究
- 批准号:
10678062 - 财政年份:2023
- 资助金额:
$ 163.97万 - 项目类别:
Mechanisms of Metal Ion Homeostasis of Oral Streptococci
口腔链球菌金属离子稳态机制
- 批准号:
10680956 - 财政年份:2023
- 资助金额:
$ 163.97万 - 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 163.97万 - 项目类别: