Deep Neural Networks To Treat Atrial Fibrillation
深度神经网络治疗心房颤动
基本信息
- 批准号:10470132
- 负责人:
- 金额:$ 19.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAddressAdultAffectAnti-Arrhythmia AgentsArrhythmiaAtrial FibrillationAwardBiochemicalBiometryCardiacClassificationClinicalClinical ResearchComputer ModelsComputing MethodologiesDataData ElementData SetDiseaseEconomic BurdenElectrophysiology (science)EpidemicFailureFatigueFlecainideFreedomFundingHealthHeart AtriumHeart failureIndividualJudgmentLeadLife Style ModificationMachine LearningMedicineMentored Patient-Oriented Research Career Development AwardMentorshipMethodologyModificationMorbidity - disease rateNonpharmacologic TherapyOutcomePatientsPersonsPharmaceutical PreparationsPharmacologyPharmacotherapyPhenotypePhysiciansPositioning AttributePulmonary veinsRegistriesResearch DesignResearch PersonnelRiskRisk FactorsScientistSignal TransductionStrokeStructureSupervisionSyndromeTaxonomyTechniquesTestingTherapeuticTrainingTranslatingTriageWorkclinical centerclinical phenotypeclinical predictorsclinical riskcohortcostdeep neural networkdesigndiverse datadofetilideeconomic implicationexperienceexperimental studyfallsfunctional outcomesheart rhythmimaging studyindividualized medicineinsightmachine learning algorithmmachine learning methodmachine learning modelmachine learning predictionmortalityneural networknovelpatient oriented researchpersonalized medicinepredictive testpreventprospectiveresponders and non-respondersresponseskillssuccesssupervised learningtoolunsupervised learning
项目摘要
PROJECT SUMMARY
Atrial fibrillation (AF) is a major health problem affecting over 5 million people in the US leading to significant
morbidity and even mortality. Therapy for this epidemic is suboptimal, with success of 30-70% at 1 year for
most therapies. Despite great advances in understanding potential AF mechanisms, these insights have not
yet translated into better AF therapy.
The scientific focus of the project centers on the issue of identifying novel phenotypes for the heterogeneous
conditions that currently fall under the rubric of AF. Machine learning is an approach well-suited to identify
novel classifications from large diverse data sets that are traditionally difficult to separate. I will use machine
learning and computational methods to analyze detailed clinical, structural, cardiac electrophysiological and
biochemical features in patients with AF, to better predict responders and non-responders to various therapies.
This may enable prospective guidance to tailor personalized therapy. In performing this project, I will grow as a
physician-scientist focused on patient-oriented research in atrial fibrillation.
The specific aims of the scientific project are as follows: First, I will create a novel disease taxonomy for AF
that classifies patients successfully treated by risk factor modification, antiarrhythmic drug therapy, or diverse
approaches to ablation, using computational methods and supervised learning on large training data from my
collaborators. I will assess the predictive efficacy of these disease partitions in a testing cohort of patients
referred for treatment of AF. Second, I will use advanced techniques in machine learning and patient-level
analyses to explain why a certain strategy may fail or succeed in an individual, paving the way for clinical use.
Third, in a pilot prospective clinical study, I will assess the feasibility and accuracy of these machine learning
models.
The findings from these experiments may provide an immediate clinical impact by delivering AF therapy
options in a patient-specific manner that optimizes benefit while reducing risk. In addition, under the balanced
and expert mentorship provided by this award, I will gain the necessary computational modelling, clinical
research design and biostatistical methodology experience to design comprehensive studies and be
competitive for independent funding.
项目概要
心房颤动 (AF) 是影响美国超过 500 万人的主要健康问题,导致重大健康问题
发病率甚至死亡率。这种流行病的治疗效果不佳,一年内的成功率为 30-70%
大多数疗法。尽管在理解潜在房颤机制方面取得了巨大进展,但这些见解并没有
但却转化为更好的 AF 治疗。
该项目的科学重点集中在识别异质性的新表型的问题上。
目前属于 AF 范畴的条件。机器学习是一种非常适合识别
从传统上难以分离的大型多样化数据集中进行新的分类。我会用机器
学习和计算方法来分析详细的临床、结构、心脏电生理和
AF 患者的生化特征,以更好地预测对各种治疗的反应者和无反应者。
这可能有助于制定个性化治疗的前瞻性指导。在执行这个项目的过程中,我将成长为一个
医生科学家专注于以患者为导向的心房颤动研究。
该科学项目的具体目标如下:首先,我将为 AF 创建一个新的疾病分类法
对通过危险因素修正、抗心律失常药物治疗或多种治疗成功治疗的患者进行分类
消融方法,使用计算方法和对我的大量训练数据进行监督学习
合作者。我将在一组测试患者中评估这些疾病分区的预测功效
转诊治疗 AF。其次,我将使用机器学习和患者层面的先进技术
分析以解释为什么某种策略在个体中可能失败或成功,为临床应用铺平道路。
第三,在试点前瞻性临床研究中,我将评估这些机器学习的可行性和准确性
模型。
这些实验的结果可能会通过房颤治疗产生直接的临床影响
以针对患者特定的方式进行选择,在降低风险的同时优化效益。另外,在均衡条件下
以及该奖项提供的专家指导,我将获得必要的计算建模、临床
研究设计和生物统计方法经验来设计全面的研究并成为
独立资助具有竞争力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tina Baykaner其他文献
Tina Baykaner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tina Baykaner', 18)}}的其他基金
Deep Neural Networks To Treat Atrial Fibrillation
深度神经网络治疗心房颤动
- 批准号:
10688134 - 财政年份:2019
- 资助金额:
$ 19.35万 - 项目类别:
Deep Neural Networks To Treat Atrial Fibrillation
深度神经网络治疗心房颤动
- 批准号:
10227786 - 财政年份:2019
- 资助金额:
$ 19.35万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Investigating the coordinated endothelial-epithelial interactions in adult hair cycle of mouse skin
研究小鼠皮肤成年毛发周期中协调的内皮-上皮相互作用
- 批准号:
10674132 - 财政年份:2023
- 资助金额:
$ 19.35万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 19.35万 - 项目类别:
The Role of Bone Sialoprotein in Modulating Periodontal Development and Repair
骨唾液酸蛋白在调节牙周发育和修复中的作用
- 批准号:
10752141 - 财政年份:2023
- 资助金额:
$ 19.35万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 19.35万 - 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
- 批准号:
10701231 - 财政年份:2023
- 资助金额:
$ 19.35万 - 项目类别: