Tumor suppressor vulnerability conferred by aneuploid loss of haploinsufficient metallothionein genes
单倍体金属硫蛋白基因的非整倍体缺失导致肿瘤抑制脆弱性
基本信息
- 批准号:10469891
- 负责人:
- 金额:$ 135.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAneuploidyBasic ScienceCadmiumCellsCellular biologyChromosomal InstabilityChromosomesDNA DamageDevelopmentEventFutureGenesGeneticIndividualInvestigationIonsMalignant NeoplasmsMalignant neoplasm of ovaryMetallothioneinModelingMolecularMolecular and Cellular BiologyMutateOncogenesPathway interactionsPharmaceutical PreparationsPharmacologyPhenotypeResearchRoleSerousTestingTherapeuticTranscription Factor 3Tumor BiologyTumor Suppressor Proteinsbasebioinformatics toolcancer cellcancer geneticscancer therapycancer typegene productgenotoxicityin vitro Assayin vivoinnovationnext generationprecision oncologypressureprogramsresponsetooltumortumorigenesis
项目摘要
Abstract
Cancer will rarely be cured through pharmacologic targeting of single genes. Tumors evolve in response to
selection pressure. Precision oncology often targets a single gene product, and that gene simply becomes
mutated once the drug is administered. Although individual genes may mutate, tumor biology is nonetheless
constrained to dysregulating specific pathways for each cancer type. We have previously created cutting-edge
bioinformatic tools to better understand which constrained pathways are acting as tumor suppressors and
oncogenes, due to collaborative gene dysregulation at the molecular pathway level. Aneuploidy is a major cause
of molecular pathway changes in cancer and unfortunately each aneuploid event alters both predicted driver
genes and unknown passenger genes. Investigation of causal aneuploid changes in a tumor remains difficult, if
not impossible, to study with current cell biology and genetic tools. However, we have discovered a unique,
commonly suppressed (70% of high-grade serous ovarian cancers have a monoallelic loss, correlating with
average reduced expression), pathway which is amenable to well-controlled basic science experimentation: the
cadmium response pathway. It is composed of 11 highly homologous metallothionein genes arrayed on a single
chromosomal locus. Metallothioneins sequester the bulk of intracellular Zn2+ and environmental genotoxic Cd2+
ions. The loss of the metallothionein locus is associated with chromosome instability and occurs early in tumor
formation. Our in vitro assays show controlled metallothionein suppression results in elevated DNA damage.
However, the role of metallothioneins as tumor suppressors and as regulators of cancer cellular and molecular
biology is largely unknown. This project will establish specific tumor suppressor phenotypes of metallothioneins
in ovarian cancer and determine if this aneuploid pathway will serve as a representative example of how multi-
genic vulnerabilities can better enable next-generation cancer therapies. We will (1) characterize in vivo the
effects of metallothionein gene loss in spontaneous tumor formation in ovarian cancer, (2) develop controlled
models of gene suppression enabling suppression of all 11 genes, including by a synthetic dead-Cas9-based
transcription factor, (3) determine which cadmium-dependent and cadmium-independent metallothionein-
regulated molecular pathways convey tumor suppressor functions, and (4) discover drug classes which best
selectively kill low-metallothionein cells. Genetic tools created by this project will enable causal investigation of
entire molecular pathways for future projects. Taken together, this innovative research program will directly test
how an uncharacterized aneuploid-suppressed pathway contributes to oncogenesis and remains a
pharmacologically targetable vulnerability throughout tumor development.
抽象的
癌症很少能通过针对单一基因的药物治疗来治愈。肿瘤的进化是为了响应
选择压力。精准肿瘤学通常针对单个基因产物,而该基因就简单地变成了
一旦服用药物就会发生突变。尽管个体基因可能发生突变,但肿瘤生物学仍然存在
仅限于失调每种癌症类型的特定途径。我们之前已经创造了尖端的
生物信息学工具可以更好地了解哪些受限途径充当肿瘤抑制因子
癌基因,由于分子途径水平上的协同基因失调。非整倍体是主要原因
癌症的分子途径变化,不幸的是每个非整倍体事件都会改变预测的驱动因素
基因和未知的乘客基因。如果
使用当前的细胞生物学和遗传工具进行研究并非不可能。然而,我们发现了一个独特的,
通常被抑制(70%的高级别浆液性卵巢癌具有单等位基因丢失,与
平均减少表达),适合良好控制的基础科学实验的途径:
镉反应途径。它由 11 个高度同源的金属硫蛋白基因排列在一个单一的
染色体位点。金属硫蛋白可隔离大部分细胞内 Zn2+ 和环境遗传毒性 Cd2+
离子。金属硫蛋白位点的丢失与染色体不稳定有关,并且发生在肿瘤早期
形成。我们的体外测定显示受控金属硫蛋白抑制会导致 DNA 损伤增加。
然而,金属硫蛋白作为肿瘤抑制因子以及癌症细胞和分子调节剂的作用
生物学很大程度上是未知的。该项目将建立金属硫蛋白的特定肿瘤抑制表型
在卵巢癌中,并确定这种非整倍体途径是否将作为多倍体如何发挥作用的代表性例子
基因脆弱性可以更好地实现下一代癌症疗法。我们将 (1) 在体内表征
金属硫蛋白基因缺失对卵巢癌自发肿瘤形成的影响,(2)发展受控
基因抑制模型能够抑制所有 11 个基因,包括基于合成的死亡 Cas9
转录因子,(3) 确定镉依赖性和镉非依赖性金属硫蛋白-
受调节的分子途径传达肿瘤抑制功能,并且(4)发现最有效的药物类别
选择性杀死低金属硫蛋白细胞。该项目创建的遗传工具将能够进行因果调查
未来项目的完整分子途径。总而言之,这项创新研究计划将直接测试
未表征的非整倍体抑制途径如何促进肿瘤发生并仍然是一个
整个肿瘤发展过程中药理学靶向的脆弱性。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joe R Delaney其他文献
Joe R Delaney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joe R Delaney', 18)}}的其他基金
Combination Of Autophagy Selective Therapeutics (COAST) in Serous Ovarian Cancer
自噬选择性治疗 (COAST) 组合治疗浆液性卵巢癌
- 批准号:
10530691 - 财政年份:2021
- 资助金额:
$ 135.9万 - 项目类别:
Combination Of Autophagy Selective Therapeutics (COAST) in Serous Ovarian Cancer
自噬选择性治疗 (COAST) 组合治疗浆液性卵巢癌
- 批准号:
10357996 - 财政年份:2021
- 资助金额:
$ 135.9万 - 项目类别:
相似国自然基金
肿瘤非整倍体悖论的新机制
- 批准号:82372721
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
非整倍体对卵巢癌免疫微环境的影响及其作为免疫治疗增效靶点的研究
- 批准号:82373401
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
生长激素通过JAK2/SHP2/ERK1/2通路降低老龄鼠卵母细胞非整倍体率的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纺锤体组装检查点功能异常在胶质瘤非整倍体形成中的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
非整倍体百合雌雄育性差异的细胞与分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
- 批准号:
10626281 - 财政年份:2023
- 资助金额:
$ 135.9万 - 项目类别:
Developing high-throughput genetic perturbation strategies for single cells in cancer organoids
开发癌症类器官中单细胞的高通量遗传扰动策略
- 批准号:
10004966 - 财政年份:2020
- 资助金额:
$ 135.9万 - 项目类别:
Developing high-throughput genetic perturbation strategies for single cells in cancer organoids
开发癌症类器官中单细胞的高通量遗传扰动策略
- 批准号:
10212991 - 财政年份:2020
- 资助金额:
$ 135.9万 - 项目类别: