Uncovering the molecular networks underlying non-genetic heterogeneity in cancer cell populations
揭示癌细胞群体非遗传异质性背后的分子网络
基本信息
- 批准号:10469459
- 负责人:
- 金额:$ 18.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAntineoplastic AgentsApoptosisBRAF geneBacteriaBiochemicalBioinformaticsBiological ModelsCancer ModelCancer PatientCancer cell lineCell CycleCell DeathCell LineCell physiologyCellsCessation of lifeChromatinComplexComputer ModelsCuesDNA Sequence AlterationDecision MakingDevelopmentDiffusionDrug ToleranceEnsureEpidermal Growth Factor ReceptorEpigenetic ProcessEquilibriumExhibitsFoundationsFutureGaussian modelGoalsGrowthGrowth FactorHeterogeneityImmunocompromised HostIn VitroIndividualKnowledgeLeadMalignant NeoplasmsMalignant neoplasm of lungMathematicsMessenger RNAMetabolismMethodsModelingMolecularMolecular ProfilingMusMutateNatureNon-Small-Cell Lung CarcinomaNormal Statistical DistributionOncogenesPathway interactionsPatientsPharmaceutical PreparationsPharmacotherapyPhenotypePlayPopulationProbabilityProcessProteinsReceptor Protein-Tyrosine KinasesRecurrenceResearchResistanceRoleSignal PathwaySignal TransductionSourceSystemSystems AnalysisTechniquesTimeTranscriptTreatment FailureTumor stageTyrosine Kinase InhibitorValidationWorkanticancer researchbasebiochemical modelbiological adaptation to stresscancer cellcancer therapycareercareer developmentdrug distributiondrug sensitivitydrug-sensitivedynamic systemepithelial to mesenchymal transitionexome sequencingexperimental studyfitnessgenetic resistancehigh dimensionalityin silicoin vitro Modelin vivoinformation processinginsightinterestkinetic modelmRNA Expressionmelanomamouse modelmutantnon-geneticnovelnovel therapeuticspredictive modelingpreventreceptorresistance mutationresponsesignature moleculesimulationsingle-cell RNA sequencingskillsstem cell differentiationstressortheoriestherapy resistanttreatment strategytumortumor heterogeneity
项目摘要
PROJECT SUMMARY
Tumor heterogeneity is a major contributor to variable response and treatment failure in cancer patients.
Usually, heterogeneity in cancer is thought of in terms of resistance-conferring genetic mutations that pre-
exist or emerge during treatment. However, recent studies, including our own, increasingly point to non-
genetic sources of heterogeneity as critical factors in the early stages of tumor response. Non-genetic
mechanisms are known to underlie cellular processes such as stem cell differentiation and epithelial-to-
mesenchymal transitions. In bacteria, isogenic cell populations have been shown to diversify in the
absence of perturbations (e.g., drugs) into a variety of cellular phenotypes, each with differential fitness to
potential stressors. This “bet hedging” strategy increases the odds that a portion of the population will
survive a future, unknown challenge. We, and others, have recently hypothesized that cancer cells
employ a similar survival strategy to withstand the initial onslaught of anticancer drugs. So-called “drug
tolerant” cells may persist within a patient for extended periods of time before acquiring genetic resistance
mutations that lead to tumor recurrence. The objective of this proposal is to uncover the molecular factors
that control non-genetic heterogeneity in cancer cell populations using a combined computational and
experimental approach. In Aim 1, I propose to construct a detailed kinetic model of the biochemical
signaling networks that control division and death decisions in individual cancer cells. It is well established
that complex biochemical networks can give rise to multiple stable equilibrium states, known as
“attractors.” Each attractor corresponds to a cellular phenotype and can be conceptualized as a basin
within an “epigenetic landscape.” Cells can transition between phenotypes with rates dependent upon the
depths of the basins and the heights of the barriers separating them. Using a dynamical systems analysis
approach, I will mathematically solve for the epigenetic landscape of the biochemical division/death model
and quantify molecule signatures for all attractors. In Aim 2, using BRAF-mutant melanoma and EGFR-
mutant lung cancer as in vitro model systems, I will use clonal and single-cell RNA sequencing and
chromatin accessibility sequencing (ATAC-seq) to enumerate the number and molecular signatures of
non-genetic phenotypic states. I will also utilize whole-exome sequencing to establish the non-genetic
nature of the phenotypes and immunocompromised mouse models to validate model predictions.
Differences between the experimental and in silico molecular signatures will lead to model refinement and
further experimentation. Quantifying the epigenetic landscapes of cancer cells will lay the groundwork for
novel therapies based on rationally modifying the landscape to favor phenotypes with increased drug
sensitivity, an approach termed “targeted landscaping.” This would reduce the size of the drug-tolerant
pool and delay, perhaps indefinitely, the acquisition of genetic resistance mutations and tumor recurrence.
项目摘要
肿瘤异质性是癌症患者可变反应和治疗失败的主要因素。
通常,癌症中的异质性是通过抗药性的基因突变来考虑的
在治疗过程中存在或出现。但是,最近的研究,包括我们自己的研究,越来越指向非 -
异质性的遗传来源是肿瘤反应早期的关键因素。非遗传学
已知机制是细胞分化和上皮到 -
间充质转变。在细菌中,同生细胞群体已显示出多种多样
没有扰动(例如,药物)进入多种细胞表型,每个表型都具有不同的适应性
潜在的压力源。这种“赌注对冲”策略增加了一部分人口的几率
在未来的未知挑战中生存。我们和其他人最近假设癌细胞
员工一种类似的生存策略,可以承受抗癌药物最初的攻击。所谓的“药物
在获得遗传抗性之前
导致肿瘤复发的突变。该提议的目的是发现分子因素
使用合并的计算和
实验方法。在AIM 1中,我建议构建生化的详细动力学模型
控制单个癌细胞中分裂和死亡决策的信号网络。它已经建立了
复杂的生化网络可以产生多种稳定的平衡状态,称为
“吸引者。”每个吸引子对应于细胞表型,可以概念化为盆地
在“表观遗传景观”中。细胞可以在表型之间过渡,速率取决于
低音的深度和将它们分开的障碍物的高度。使用动态系统分析
方法,我将在数学上解决生化划分/死亡模型的表观遗传景观
并量化所有吸引子的分子签名。在AIM 2中,使用BRAF突变药物黑色素瘤和EGFR-
突变肺癌作为体外模型系统,我将使用克隆和单细胞RNA测序以及
染色质可及性测序(ATAC-SEQ),以列举数量和分子特征
非遗传表型状态。我还将利用全外观测序来建立非基因
表型和免疫功能低下的小鼠模型的性质以验证模型预测。
实验和计算机分子特征之间的差异将导致模型的细化,并且
进一步的实验。量化癌细胞的表观遗传景观将为
基于合理修改景观以增加药物的表型的新型疗法
灵敏度,一种称为“有针对性的景观”的方法。这将减少耐药剂的大小
池和延迟,也许是无限期的,是遗传抗性突变和肿瘤复发的获取。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Concepts of multi-level dynamical modelling: understanding mechanisms of squamous cell carcinoma development in Fanconi anemia.
- DOI:10.3389/fgene.2023.1254966
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Velleuer, Eunike;Dominguez-Huettinger, Elisa;Rodriguez, Alfredo;Harris, Leonard A.;Carlberg, Carsten
- 通讯作者:Carlberg, Carsten
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonard Alfredo L. Harris其他文献
Leonard Alfredo L. Harris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonard Alfredo L. Harris', 18)}}的其他基金
Uncovering the molecular networks underlying non-genetic heterogeneity in cancer cell populations
揭示癌细胞群体非遗传异质性背后的分子网络
- 批准号:
10249073 - 财政年份:2020
- 资助金额:
$ 18.76万 - 项目类别:
Uncovering the molecular networks underlying non-genetic heterogeneity in cancer cell populations
揭示癌细胞群体非遗传异质性背后的分子网络
- 批准号:
9892615 - 财政年份:2020
- 资助金额:
$ 18.76万 - 项目类别:
相似国自然基金
基于脱氢弯孢霉素骨架的ACLY降解剂的设计、合成及抗肿瘤活性研究
- 批准号:82304312
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于阳离子-π相互作用的“开/关”型纳米光敏剂的光敏活性调控及其抗肿瘤研究
- 批准号:82304434
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载自组装型非核苷类STING激动剂的亚精胺水凝胶用于抗肿瘤免疫治疗及机制研究
- 批准号:82303561
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于PROTAC的选择性AKT1降解剂的设计、合成及抗肿瘤活性研究
- 批准号:82304287
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于PWWP域的NSD2蛋白降解剂的设计、合成与抗肿瘤活性研究
- 批准号:22307132
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of Parp inhibitor-induced bone marrow toxicities
Parp 抑制剂诱导骨髓毒性的机制
- 批准号:
10637962 - 财政年份:2023
- 资助金额:
$ 18.76万 - 项目类别:
Crosslinking-based targeted therapy for triple-negative breast cancer
基于交联的三阴性乳腺癌靶向治疗
- 批准号:
10650998 - 财政年份:2023
- 资助金额:
$ 18.76万 - 项目类别:
Role of necroptosis in colorectal cancer therapy
坏死性凋亡在结直肠癌治疗中的作用
- 批准号:
10891823 - 财政年份:2023
- 资助金额:
$ 18.76万 - 项目类别:
Project 1: Overcoming therapeutic resistance in pancreatic cancer through epigenetic reprogramming
项目1:通过表观遗传重编程克服胰腺癌的治疗耐药性
- 批准号:
10629063 - 财政年份:2023
- 资助金额:
$ 18.76万 - 项目类别:
New Methods for the Synthesis of Biologically Active Compounds
合成生物活性化合物的新方法
- 批准号:
10551507 - 财政年份:2023
- 资助金额:
$ 18.76万 - 项目类别: