The mechanisms of connectivity and function underlying multisensory integration in the Drosophila melanogaster mushroom body
果蝇蘑菇体内多感觉整合的连接和功能机制
基本信息
- 批准号:10468042
- 负责人:
- 金额:$ 33.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAffectAnatomyArchitectureBehavioralBehavioral ParadigmBiological ModelsBlueberriesBrainBrain DiseasesBrain regionCalciumCellsColorComplexCuesDataDefectDrosophila genusDrosophila melanogasterEstersFruitFunctional disorderGoalsHumanImageIndividualInterneuronsInvertebratesKnowledgeLeadLearningMapsMediatingMemoryMental disordersModalityModelingMushroom BodiesNeuronsOdorsOutcomeOutputPatientsPatternPerceptionPeripheralPopulationPrimatesProcessPropertyResearchResearch ProposalsRoleSensoryShapesSiteSmell PerceptionStimulusStructureSystemTechniquesTestingVertebratesVisualWorkautism spectrum disorderclassical conditioningdesignexperimental studyflyinsightmultimodalitymultisensorypiriform cortexprogramsresponsesensory systemstemtherapy developmentvisual information
项目摘要
SUMMARY
Multisensory integration is a fundamental function of the brain whereby the information collected through
different sensory modalities is combined to form a unified percept. Defects in multisensory integration can
affect perception and are a hallmark of many mental illnesses including autism spectrum disorders. Despite its
fundamental role in the healthy and diseased brain, it remains unclear how multisensory integration is
implemented in the brain, at the level of neuronal networks. This gap in our knowledge stems largely from the
fact that multisensory integration has been primarily studied in the primate brain, where it is difficult to
understand how neuronal activity patterns emerge from a specific connectivity architecture.
In this proposal, we are putting forward a plan to investigate the basic mechanisms of multisensory
integration using the Drosophila mushroom body as a model system. The mushroom body has been primarily
investigated as an olfactory brain center but recent studies, including our own preliminary data, suggest that it
is also a site for multisensory integration. The central hypothesis tested in this proposal is that the mushroom
body integrates sensory information through two different mechanisms: an additive mechanism, whereby
individual mushroom body neurons receive input only from only one sensory system and an integrative
mechanism whereby individual mushroom body neurons integrate input from multiple sensory systems. In our
preliminary analyses, we have identified the neurons projecting from different sensory centers — including
visual, olfactory, gustatory, thermosensory and hygrosensory centers — to the mushroom body. We are
proposing to test our leading hypothesis by pursuing three specific aims. First, we will determine how individual
mushroom body neurons are connected to different sensory systems using a neuronal tracing technique we
have developed. Second, we will determine how the entire population of mushroom body neurons responds to
multisensory stimuli using calcium imaging. Third, we will determine whether, when learning complex
multisensory stimuli, Drosophila learns individual features of these stimuli.
Altogether, these three aims will provide anatomical, functional and behavioral evidence supporting our
hypothesis. Once completed, this proposal will have delineated the basic mechanisms of connectivity and
function underlying multisensory integration in the mushroom body. Given that many fundamental design
principles of sensory systems are conserved between invertebrates and vertebrates, it is likely that the
mechanisms of connectivity and function underlying multisensory integration in Drosophila will too be
conserved in the more complex mammalian brain. The overarching goal of our research program is to apply
our findings to a broader context: we believe that by understanding better how the numerically simple
Drosophila mushroom body integrates, represents and transforms multisensory information, we will gain insight
into how these mechanisms are implemented in the human brain and how their dysfunction can lead to defects
in perception.
概括
多感官整合是大脑的基础功能。
将不同的感觉模态组合在一起以形成统一的感知。
影响感知,是许多精神精神疾病的标志,包括自闭症谱系障碍
在健康和患病的大脑中的基本作用,尚不清楚多感觉整合如何IST
在大脑中,在我们的知识中,这一差距很大程度上源于您
多感觉整合在灵长类动物的大脑中进行了初步研究
了解神经元活动模式如何从特定的连接体系结构中出现。
在此提案中,我们提出了多义的基本机制
使用果蝇蘑菇体作为模型系统的整合。
被调查为嗅觉脑中心,但最近的研究,包括我们自己的预启示数据,表明它是ITIGHT
也用于多感官整合。
身体通过两种不同的机制整合了感官信息:一种加性机制
单个蘑菇体神经元仅收到输入一个感官系统和一个集成
单个蘑菇身体神经元的机制使输入一些
初步分析,我们从不同的感觉中心确定了神经元项目,包括
视觉,嗅觉,味道,热体和湿气中心 - 我们是蘑菇体
通过追求三个特定目标来检验我们的主要假设。
蘑菇体神经元使用神经元技术连接到不同的感觉系统
第二
使用钙成像的多感官刺激。
多感官刺激,果蝇学习了刺激的单个特征。
总之,三个目标将提供解剖,功能和行为证据,以支持我们
曾经的假设。
蘑菇体中多感官整合的功能。
感觉系统的原理是无脊椎动物和脊椎动物之间的保守的,您可能很可能
连通性和功能的机制在果蝇中的多感官整合也将是
在更复杂的Mamalian大脑中保守的是我们研究计划的总体目标
我们在更广泛的背景下的发现:我们相信数字简单
果蝇蘑菇体整合,代表和转换多感官信息,我们将获得洞察力
涉及如何在人脑中实现机制以及功能障碍如何导致缺陷
在感知中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sophie Caron其他文献
Sophie Caron的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sophie Caron', 18)}}的其他基金
The mechanisms of connectivity and function underlying multisensory integration in the Drosophila melanogaster mushroom body
果蝇蘑菇体内多感觉整合的连接和功能机制
- 批准号:
10204131 - 财政年份:2018
- 资助金额:
$ 33.36万 - 项目类别:
The mechanisms of connectivity and function underlying multisensory integration in the Drosophila melanogaster mushroom body
果蝇蘑菇体内多感觉整合的连接和功能机制
- 批准号:
9791010 - 财政年份:2018
- 资助金额:
$ 33.36万 - 项目类别:
Biased randomness: a fundamental connectivity mechanism for associative brain centers
偏向随机性:关联大脑中心的基本连接机制
- 批准号:
10204134 - 财政年份:2018
- 资助金额:
$ 33.36万 - 项目类别:
Biased randomness: a fundamental connectivity mechanism for associative brain centers
偏向随机性:关联大脑中心的基本连接机制
- 批准号:
10448394 - 财政年份:2018
- 资助金额:
$ 33.36万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Environmental factors in pathobiology of dementia: the role of PCB exposure, microbiome, and tissue barrier dysfunction
痴呆病理学中的环境因素:PCB 暴露、微生物组和组织屏障功能障碍的作用
- 批准号:
10558120 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
Circadian Rhythms in Blood Brain Barrier Permeability and Increased Efficacy of Chemotherapy for Brain Metastases
血脑屏障通透性的昼夜节律和脑转移化疗疗效的提高
- 批准号:
10663717 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
Injury of blood brain and alveolar-endothelial barriers caused by alcohol and electronic cigarettes via purinergic receptor signaling
酒精和电子烟通过嘌呤受体信号传导引起血脑和肺泡内皮屏障损伤
- 批准号:
10638221 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
Inhibition or evasion of P-glycoprotein-mediated drug transport
抑制或逃避 P-糖蛋白介导的药物转运
- 批准号:
10568723 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
Steroid Hormone Pathways Regulating BPH and LUTS
调节 BPH 和 LUTS 的类固醇激素途径
- 批准号:
10601867 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别: