Developing A Transition MicroElelectrode Array for Large-scale Brain Recording
开发用于大规模脑记录的过渡微电子电极阵列
基本信息
- 批准号:10463817
- 负责人:
- 金额:$ 22.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAddressAgarAgingAxonBehaviorBiocompatible MaterialsBiodegradationBiologicalBiologyBiomedical EngineeringBiopolymersBrainBrain MappingBrain regionCellsCustomDataDevelopmentDevicesDimensionsElectrodesEmotionsEncapsulatedEnvironmentFailureFutureGelGoalsHumanHybridsImageImmune responseImplanted ElectrodesIn VitroIncubatorsIndustryInflammatoryLiteratureMeasurementMedicalMemoryMethodologyMicroelectrodesMicrofabricationMorphologyNeuronsNeurosciencesOutcomeOxidesPatientsPerformancePeriodicityPhosphate BufferPhysiologicalPolymersProcessPropertyRattusRepeat SurgeryResearchResolutionSalineSignal TransductionSiliconSpectrum AnalysisStainsSynapsesSystemTechnologyTestingTimeTissuesUtahWorkbasebiocompatible polymerbiodegradable polymerbiomaterial compatibilitybrain computer interfacebrain machine interfacecomplex biological systemsdensitydesignelectric impedanceexperimental studyfluorescence imagingimplantationin vitro testingin vivoinnovative technologiesinsightmechanical propertiesnerve stem cellnervous system disorderneural circuitpolymerizationpreventprototyperelating to nervous systemspatiotemporalstem cellstissue phantomtwo-photonvoltage
项目摘要
Project Summary
The brain’s functions are determined by its neural circuits, which consist of approximately 85 billion
neuronal cells. Current brain recording technology is not sufficient to accomplish the goal of a high resolution
mapping of brain activity due to the lack of a large-scale recording technology. Another vital challenge for
current brain recording technology is obtaining longer lifetime for the implanted electrodes to prevent repeated
surgeries. As over time, the harsh physiological environment (wet, ionic, reactive oxidizing species, immune
response, etc.) in the neural tissue breaks down and/or encapsulates the electrode implants.
To overcome these obstacles, we propose to develop and validate an implantable Transition Micro-
Electrode Array (tMEA) for large-scale brain recording and modulation. This approach has the potential to
eventually achieve an interface density of 106 “electrodes” per cm2, which is several orders of magnitude
beyond established neural recording solutions. Except for the ultra-high recording capability, radically different
from existing neural technologies, the tMEA uses living neurons as means of electrical recording and its axon
guiding probes will be fabricated from degradable biopolymer via 3D printing. We expect the biocompatibility of
the tMEA’s unique design will greatly decrease tissue damage and may suppress inflammatory immune
response in the brain. The tMEA technology will use biopolymers that degrade safely after implantation,
exposing living neural stem cells that will project their axons into local brain regions to form synaptic
connections with the patient’s own neurons. In this way, the biological neuronal axons grow into a stable
“electrode array” and replace a failure-prone abiotic interface with natural biotic connections act as a high-
performance brain-machine interface. All these distinctive features endow the tMEA with unique potential for
neuroscientists and clinicians to explore human brain functions and treat neurological disease, enabling an
advancement of neuroscience, medical practice, and a variety of other future technologies.
项目摘要
大脑的功能取决于其神经回路,该电路约为850亿
神经元细胞。当前的大脑记录技术不足以实现高分辨率的目标
由于缺乏大规模记录技术而导致大脑活动的映射。另一个至关重要的挑战
当前的大脑记录技术正在为植入的电子获得更长的寿命,以防止重复
手术。随着时间的流逝,HARMSH物理环境(湿,离子,反应性氧化物种,免疫
响应等。
为了克服这些障碍,我们建议开发和验证可植入的过渡微观
用于大型大脑记录和调制的电极阵列(TMEA)。这种方法有可能
最终每CM2达到106个“电极”的界面密度,这是几个数量级
超越已建立的神经记录解决方案。除了超高的记录能力,根本不同
从现有的神经元中,TMEA使用活神经元作为电记录的手段及其轴突
指导问题将通过3D打印从可降解的生物聚合物制造。我们期望的生物相容性
TMEA的独特设计将大大减少组织损伤,并可能抑制炎症免疫
大脑的反应。 TMEA技术将使用在植入后安全降解的生物聚合物,
暴露活着的神经干细胞,将其轴突投射到局部大脑区域以形成突触
与患者自己的神经元的联系。这样,生物神经元轴突生长成稳定
“电极阵列”并用天然生物连接代替容易产生故障的非生物界面作为高
性能脑机界面。所有这些独特的功能赋予TMEA具有独特的潜力
神经科学家和临床医生探索人脑功能并治疗神经系统疾病,使
神经科学,医学实践和其他各种未来技术的进步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yantao Fan其他文献
Yantao Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yantao Fan', 18)}}的其他基金
Developing A Transition MicroElelectrode Array for Large-scale Brain Recording
开发用于大规模脑记录的过渡微电子电极阵列
- 批准号:
10294077 - 财政年份:2021
- 资助金额:
$ 22.66万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
GM-CSF, macrophages, and susceptibility to Mycobacterium abscessus pulmonary infection
GM-CSF、巨噬细胞和脓肿分枝杆菌肺部感染的易感性
- 批准号:
10637279 - 财政年份:2023
- 资助金额:
$ 22.66万 - 项目类别:
Understanding how variations in nuclear size after whole genome doubling affect tumorigenesis
了解全基因组加倍后核大小的变化如何影响肿瘤发生
- 批准号:
10607178 - 财政年份:2023
- 资助金额:
$ 22.66万 - 项目类别:
Role of PADI4 as a key epigenetic regulator of the p53 pathway and tumor suppression
PADI4 作为 p53 通路和肿瘤抑制的关键表观遗传调节因子的作用
- 批准号:
10603437 - 财政年份:2023
- 资助金额:
$ 22.66万 - 项目类别: