Death and Destruction: How the Ubiquitin Proteasome System Executes Linker Cell-type Death

死亡与破坏:泛素蛋白酶体系统如何执行连接细胞型死亡

基本信息

  • 批准号:
    10464485
  • 负责人:
  • 金额:
    $ 6.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-28 至 2024-09-27
  • 项目状态:
    已结题

项目摘要

Project Summary The long-term goal of the proposed research is to understand the cell biological mechanisms that execute non-apoptotic cell death. Programmed cell death is essential for organismal development and homeostasis, and its disruption is associated with many human diseases including cancer and neurodegeneration. Apoptosis is a prominent cell death form, however mutations in key apoptotic regulators only cause minor developmental defects. Non-apoptotic programs, therefore, also exist, but their molecular basis is poorly understood. Linker Cell-type Death (LCD) is a non-apoptotic and caspase-independent cell death process operating in C. elegans development, and its morphological hallmarks have also been observed in vertebrate development and disease. The Ubiquitin Proteasome System (UPS) is a key effector of LCD in C. elegans, but how it executes cell death is unknown. Here I will use powerful genetic and molecular tools in C. elegans to identify and characterize the proteolytic targets of the UPS during LCD and determine how their degradation trigger cell demise. In contrast to apoptosis, which uses caspases that transiently bind their substrates and, remarkably, remain poorly understood, the UPS stably interacts with its substrates. Therefore, the proteins I discover that precipitate cell death may unearth general mechanisms of cellular destruction that also function during apoptosis and disease. Indeed, our preliminary data suggest that one candidate substrate degraded by the UPS is an enzyme required for the maintenance of heterochromatin, which is in line with our previous observations that dying linker cells exhibit an open chromatin state. Therefore, this proposal will investigate the exciting hypothesis that chromatin remodeling, precipitated by the UPS, triggers cellular destruction. I will also discover additional proteolytic targets and mechanisms that execute non-apoptotic cell death with yeast 2-hybrid and RNAi screens. Because dysregulation of the UPS and chromatin state are also linked to tumorigenesis and neurodegenerative diseases, my studies can provide greater understanding of cell death programs disrupted in disease that can point towards new therapeutic targets.
项目概要 拟议研究的长期目标是了解细胞生物学机制 执行非凋亡细胞死亡。程序性细胞死亡对于有机体的发育和发育至关重要 体内平衡的破坏与许多人类疾病有关,包括癌症和 神经变性。细胞凋亡是一种重要的细胞死亡形式,但仅关键细胞凋亡调节因子发生突变 造成轻微的发育缺陷。因此,非凋亡程序也存在,但其分子基础是 不太了解。连接细胞型死亡 (LCD) 是一种非凋亡且不依赖 caspase 的细胞死亡过程 在线虫发育中发挥作用,其形态特征也在脊椎动物中观察到 发育和疾病。泛素蛋白酶体系统 (UPS) 是秀丽隐杆线虫 LCD 的关键效应器,但 它如何执行细胞死亡尚不清楚。在这里,我将在秀丽隐杆线虫中使用强大的遗传和分子工具 识别和表征 LCD 期间 UPS 的蛋白水解目标,并确定它们如何 降解触发细胞死亡。与细胞凋亡相反,细胞凋亡使用半胱天冬酶瞬时结合其 值得注意的是,人们对 UPS 的了解仍知之甚少,但 UPS 与其基底稳定地相互作用。所以, 我发现的促进细胞死亡的蛋白质可能会揭示细胞破坏的一般机制 在细胞凋亡和疾病期间也发挥作用。事实上,我们的初步数据表明,一种候选底物 UPS降解的酶是维持异染色质所需的酶,这符合我们的理论 之前的观察表明,垂死的连接细胞表现出开放的染色质状态。因此,本提案将 研究令人兴奋的假设,即 UPS 引发的染色质重塑触发细胞 破坏。我还将发现执行非凋亡细胞的其他蛋白水解靶点和机制 酵母2-杂交和RNAi筛选导致死亡。因为 UPS 和染色质状态的失调也会影响 与肿瘤发生和神经退行性疾病相关,我的研究可以更好地了解细胞 因疾病而中断的死亡计划可能会指向新的治疗目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lauren Bayer Horowitz其他文献

Lauren Bayer Horowitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lauren Bayer Horowitz', 18)}}的其他基金

Death and Destruction: How the Ubiquitin Proteasome System Executes Linker Cell-type Death
死亡与破坏:泛素蛋白酶体系统如何执行连接细胞型死亡
  • 批准号:
    10793327
  • 财政年份:
    2022
  • 资助金额:
    $ 6.76万
  • 项目类别:
Death and Destruction: How the Ubiquitin Proteasome System Executes Linker Cell-type Death
死亡与破坏:泛素蛋白酶体系统如何执行连接细胞型死亡
  • 批准号:
    10678636
  • 财政年份:
    2022
  • 资助金额:
    $ 6.76万
  • 项目类别:
Molecular mechanisms that regulate p38 MAPK-dependent neuronal gene expression
调节 p38 MAPK 依赖性神经元基因表达的分子机制
  • 批准号:
    9258109
  • 财政年份:
    2016
  • 资助金额:
    $ 6.76万
  • 项目类别:

相似国自然基金

分泌IL-6纳米抗体的重组枯草芽孢杆菌通过CXCL10/CXCR3轴介导CD4+效应T细胞凋亡减轻IBD肠道炎症的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
抗CD4自身抗体介导CD4+T细胞凋亡在艾滋病免疫无应答患者中的机制及治疗作用
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
TNFR2抗体通过抑制CD8+T细胞凋亡进而促进抗肿瘤免疫的机制研究
  • 批准号:
    81902918
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
凋亡细胞诱导的多反应性自然抗体介导大鼠移植肾排斥反应及损伤的机制
  • 批准号:
    81873873
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
利用CRISPR/Cas9双基因精准编辑和强化CHO抗体表达体系研究
  • 批准号:
    31670944
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Immunoepigenetic targeting of MHC regulators in FAP
FAP 中 MHC 调节因子的免疫表观遗传学靶向
  • 批准号:
    10677375
  • 财政年份:
    2023
  • 资助金额:
    $ 6.76万
  • 项目类别:
Targeting a ectonucleotidase in the heart with a monoclonal antibody to prevent post-infarct heart failure
用单克隆抗体靶向心脏中的核酸外切酶以预防梗死后心力衰竭
  • 批准号:
    10711469
  • 财政年份:
    2023
  • 资助金额:
    $ 6.76万
  • 项目类别:
Characterization of novel pyrazole compounds with potent anti-cancer activity
具有有效抗癌活性的新型吡唑化合物的表征
  • 批准号:
    10627543
  • 财政年份:
    2023
  • 资助金额:
    $ 6.76万
  • 项目类别:
Safe, CRISPR/Cas-free B cell editing for therapeutic applications
用于治疗应用的安全、无 CRISPR/Cas 的 B 细胞编辑
  • 批准号:
    10725412
  • 财政年份:
    2023
  • 资助金额:
    $ 6.76万
  • 项目类别:
The role of LPCAT3 in pathogenesis of diabetic cardiomyopathy
LPCAT3在糖尿病心肌病发病机制中的作用
  • 批准号:
    10867671
  • 财政年份:
    2023
  • 资助金额:
    $ 6.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了