Community-derived zinc metal regulation from monolayer to biofilm.
从单层到生物膜的群落衍生锌金属调节。
基本信息
- 批准号:10462373
- 负责人:
- 金额:$ 6.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAntibiotic ResistanceAntibiotic TherapyAntibioticsBacteriaBehaviorBindingBiomedical EngineeringBiophysicsBirthCell SurvivalCellsCellular AssayChemicalsCommunicationCommunitiesComplexConsumptionCuesDataDependenceDevelopmentDietDiseaseEcosystemEnvironmentEscherichia coliExcisionFluorescenceFoodFutureGene ExpressionGenesGram-Negative BacteriaHealthHomeHomeostasisHumanImmune systemIndividualInfectionIntestinesInvadedKnowledgeLifeMeasuresMediatingMentorsMetalsMicrobeMicrobial BiofilmsMicrofluidic MicrochipsMicrofluidicsMicronutrientsMissionModelingMonitorNational Institute of General Medical SciencesNeighborhoodsNutrientOrganismOutcomePathway interactionsPlayPredictive FactorProcessProteinsProxyPublic HealthPumpRecording of previous eventsRegulationResearchResearch PersonnelRoleSchemeSideSignal TransductionSignaling MoleculeSocial NetworkSpectrum AnalysisSystemTechniquesTestingTimeTrainingTransition ElementsVirulenceVirulentWorkZincantimicrobialbacterial communitycell communitychemical geneticschemical reactioncombatdesignefflux pumpenvironmental changeenvironmental stressorfitnessgenetic manipulationgenetically modified cellsgut microbiomeimage processingimaging platforminnovationmembermetal poisoningmicrobialmicrobial communitymicrobiomemonolayernovel therapeutic interventionopportunistic pathogenoptogeneticspathogenpathogenic microbeperiplasmquorum sensingrecruitresponseside effectsingle moleculeuptake
项目摘要
Project Summary and Abstract
In humans, the gut is home to the most extensive set of diverse bacteria actively working together to break
down nutrients for consumption, defend against pathogens, and train the immune system, as well as actively
communicating with the host cells to optimize their survival. The gut microbiome formed shortly after birth
changes over time in response to the diet and overall health of the host. When a pathogen invades the gut and
adversely affects the host’s health, it is treated with antibiotics. However, the treatment has the side effect of
indiscriminately altering the gut microbiome, leaving the host even more vulnerable to a future infection.
Communities of bacterial cells maintain a state of homeostasis by actively communicating with each other and
the host. This signaling system has the potential to serve as an innovative approach to treat virulent pathogens
by recruiting the microbiome’s own defense system. However, it is unclear what metabolites serve as a
signaling molecule to coordinate behavior. Transition metals play significant roles as micronutrients necessary
to carry out complex chemical reactions required to sustain life. Consequently, their concentrations inside the
cells are tightly regulated. This study focuses on zinc metal homeostasis due to its vital role in catalytic,
structural, and regulatory functions in Escherichia coli, a model Gram-negative bacterium and a common
bacterium in the environment, foods, and intestines. The overall objective of the proposed work is to determine
whether zinc can act as a chemical cue to coordinate behavior in a community of cells in the context of metal
homeostasis. My central hypothesis is that zinc acting as a signaling molecule can influence the cell’s
neighborhood gene expression state to account for a changing environment in which the micronutrient is in low
supply, excess, or used as a form of attack by a pathogen or the immune system. The hypothesis will be tested
using combined approaches of microfluidics devices, chemical/genetic manipulations, optogenetics,
single-molecule spectroscopy, and bulk biophysical/biomolecular/cellular assays. The proposed research has
two specific aims: 1) Define the coordination of uptake and efflux capabilities among individual cells in a
community as a function of zinc exposure. 2) Define the relation of periplasmic zinc concentration changes
among individual cells in a community upon perturbation of their metal homeostasis. The applicant will be
advised by a mentoring team that includes a chemist with expertise in single-molecule spectroscopy of
bacterial metal uptake/efflux pumps, a biomedical engineer with expertise in microfluidic systems, and a
microbiologist with expertise in bacterial metal homeostasis. The broader impact of this research is the creation
of a quantitative model to describe how zinc metal homeostasis is achieved at the community level and
delineate the role of the individual cells in a colony in facilitating homeostasis. The significance of this work is
the creation of fundamental knowledge for help designing new innovative antimicrobial therapy that utilizes
metal homeostasis.
.
项目概要和摘要
在人类中,肠道是最广泛的多种细菌的家园,这些细菌积极地协同工作,以打破
减少消耗的营养物质,防御病原体,训练免疫系统,以及积极地
肠道微生物组在出生后不久就形成了,与宿主细胞进行交流以优化其生存。
当病原体侵入肠道时,它会随着时间的推移而变化,以响应宿主的饮食和整体健康状况。
对宿主的健康产生不利影响,可以用抗生素治疗,但这种治疗有副作用。
不加区别地改变肠道微生物组,使宿主更容易受到未来感染的影响。
细菌细胞群落通过积极地相互沟通和维持体内平衡状态
该信号系统有潜力成为治疗有毒病原体的创新方法。
然而,目前还不清楚什么代谢物可以发挥作用。
过渡金属作为必要的微量营养素发挥着重要作用。
进行维持生命所需的复杂化学反应,其浓度在体内。
由于锌金属在催化、
大肠杆菌(一种模式革兰氏阴性细菌和常见细菌)的结构和调节功能
拟议工作的总体目标是确定环境、食物和肠道中的细菌。
锌是否可以作为化学线索来协调金属背景下细胞群落的行为
我的中心假设是锌作为信号分子可以影响细胞的稳态。
邻近基因表达状态,以解释微量营养素处于低水平的环境变化
供应、过量或用作病原体或免疫系统的攻击形式 该假设将得到检验。
使用微流体装置、化学/遗传操作、光遗传学的组合方法,
单分子光谱学和批量生物物理/生物分子/细胞测定。
两个具体目标:1)定义单个细胞之间摄取和流出能力的协调
群落作为锌暴露的函数 2) 定义周质锌浓度变化的关系。
申请人将在群落中的各个细胞中发现其金属稳态受到干扰。
由指导团队提供建议,其中包括具有单分子光谱专业知识的化学家
细菌金属摄取/流出泵、具有微流体系统专业知识的生物医学工程师以及
具有细菌金属稳态方面专业知识的微生物学家,这项研究的更广泛影响是创造。
描述如何在社区层面实现锌金属稳态的定量模型
描述群体中单个细胞在促进体内平衡中的作用。这项工作的意义在于。
创造基础知识,帮助设计新的创新抗菌疗法,利用
金属稳态。
。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Felix Steven Alfonso其他文献
Felix Steven Alfonso的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Felix Steven Alfonso', 18)}}的其他基金
Community-derived zinc metal regulation from monolayer to biofilm.
从单层到生物膜的群落衍生锌金属调节。
- 批准号:
10609815 - 财政年份:2022
- 资助金额:
$ 6.76万 - 项目类别:
相似国自然基金
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
- 批准号:82304313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
乙醇脱氢酶AdhB介导肺炎链球菌抗生素耐药性的机制研究
- 批准号:32300154
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鸭肠道菌群抗生素耐药性分布及替抗噬菌体内溶素鉴定研究
- 批准号:32360830
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
胞外DNA对厌氧颗粒污泥抗生素耐药性转移的影响及作用机制
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
A Novel Sublingual Vaccine to Prevent Neisseria Gonorrhoeae Infection
预防淋病奈瑟菌感染的新型舌下疫苗
- 批准号:
10699065 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
A Randomized Pilot and Feasibility Study of a cultuRE-Directed approach to Urinary traCT Infection symptoms in older womeN: a mixed methods evaluation - the REDUCTION trial
针对老年女性尿路感染症状的文化导向方法的随机试验和可行性研究:混合方法评估 - REDUCTION 试验
- 批准号:
10586250 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Investigating the Contribution of the Coxiella Cell Wall to Intracellular Pathogenesis
研究柯克斯体细胞壁对细胞内发病机制的贡献
- 批准号:
10593290 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Molecular Mechanisms of Pseudomonas aeruginosa Antibiotic Persistence in Monocultures and Microbial Communities
单一栽培和微生物群落中铜绿假单胞菌抗生素持久性的分子机制
- 批准号:
10749974 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Intestinal Microbiota Affect Stroke Outcome by Modulating the Dendritic Cell-regulatory T Cell Axis
肠道微生物群通过调节树突状细胞调节 T 细胞轴影响中风结果
- 批准号:
10751249 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别: