Investigation of the role of insulin receptor in chromosome stability.
研究胰岛素受体在染色体稳定性中的作用。
基本信息
- 批准号:10461138
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-05 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAneuploidyBindingBiochemistryCRISPR/Cas technologyCell Differentiation processCell ProliferationCell divisionCell membraneCell surfaceCellsCellular Metabolic ProcessCellular biologyChromosomal StabilityChromosome SegregationClathrin AdaptorsClinical TreatmentComplexCryoelectron MicroscopyDiabetes MellitusDiseaseEndocytosisEnsureFutureGenesGenomicsGoalsGrowthGrowth FactorGrowth Factor ReceptorsHealthHomeostasisHumanHyperinsulinismImmuneInsulinInsulin ReceptorInsulin-Like-Growth Factor I ReceptorInvestigationKnowledgeLigandsMAP Kinase GeneMXI1 geneMalignant NeoplasmsMetabolicMetabolismMitogensMitosisMitotic CheckpointMusNon-Insulin-Dependent Diabetes MellitusNutrientOrganismOutcomePathway interactionsPhysiologicalProliferatingProteinsProto-Oncogene Proteins c-aktReceptor Mediated Signal TransductionReceptor Protein-Tyrosine KinasesReceptor SignalingRegulationResearchRiskRoleSignal PathwaySignal TransductionSurfaceT-Cell LymphomaTherapeuticTissuesTranslational Researchcancer cellcancer immunotherapyextracellulargenome-wideloss of functionmouse geneticsnovelreceptor functionrecruitspatiotemporaltumor growth
项目摘要
PROJECT SUMMARY
Multicellular organisms develop receptor-mediated signal transduction initiated by extracellular growth factors to
proliferate. Insulin has long been known as a growth factor, and hyperinsulinemia can promote and sustain tumor
growth. Insulin receptor (IR) localizes to the cell surface plasma membrane both in metabolic tissue cells and in
highly proliferative cells such as immune cells and cancer cells. IR activates two downstream signaling pathways,
the PI3K-AKT pathway and the MAPK pathway, to regulate cell metabolism, proliferation, and growth. Despite
intriguing findings for IR signaling in systemic homeostasis, how the nutrient signaling maintains chromosome
stability still remains uncertain. This gap in our knowledge presents a key barrier to our understanding of the
function of insulin in cell proliferation and differentiation and its impact on human health, as hyperinsulinemia is
associated with various diseases including type 2 diabetes and cancer. The key spindle checkpoint protein MAD2
forms a mitotic checkpoint complex (MCC) and ensures the fidelity of chromosome segregation. Our recent
studies showed that MAD2 binds to IR, recruits the clathrin adaptor complex by assembling an MCC-like complex,
and promotes IR endocytosis. In our unpublished results, we found that disruption of IR-MAD2 interaction in
mice increases aneuploidy in the immune cells and promotes T-cell lymphoma. These results suggest that the
spindle checkpoint regulators and IR mutually regulate each other in both mitosis and IR signaling. IR and insulin-
like growth factor 1 receptor (IGF1R) are highly homologous receptor tyrosine kinases (RTKs). IGF1R does not
bind to MAD2, and its endocytosis mechanism and signaling outcomes are different from that of IR. We recently
defined the distinct activation mechanisms of IR and IGF1R, suggesting that ligand-specific induced structural
differences might affect the endocytosis and downstream signaling of RTKs. In parallel to our studies on the role
of spindle checkpoint proteins in IR signaling, we have also performed unbiased, systematic genome-wide loss
of function studies using CRISPR-Cas9. We identified novel genes that increase or decrease the levels of surface
IR and IR signaling. Here, we propose to combine approaches in mouse genetics, cell biology, biochemistry,
genomics and cryo-EM to determine the function of IR in mitosis, as well as activation mechanisms of IR signaling
for cell proliferation vs. metabolism. Our goals over the next five years are to explore the following questions: (1)
how does IR ensure accurate chromosome segregation in mitosis, and what is the physiological function for IR
in cell division; (2) how does IR selectively activate the PI3K-AKT vs. MAPK signaling branch; and (3) what other
factors are required for IR function in cell proliferation and differentiation? Collectively, the proposed research
will advance our understanding of the function, regulation, and mechanism(s) of insulin action in physiological
cell proliferation and differentiation. Furthermore, our studies will likely serve as a basis for further translational
research and future therapeutics as hyperinsulinemia and type 2 diabetes are associated with increased risks
for certain cancers and may also be harnessed for cancer immunotherapies.
项目摘要
多细胞生物会发展由受体介导的信号转导,该信号转导,由细胞外生长因子引发
增生。胰岛素长期以来一直被称为生长因子,高胰岛素血症可以促进和维持肿瘤
生长。胰岛素受体(IR)位于代谢组织细胞中的细胞表面质膜和
高度增殖的细胞,例如免疫细胞和癌细胞。 IR激活两个下游信号通路,
PI3K-AKT途径和MAPK途径,以调节细胞代谢,增殖和生长。尽管
全身稳态中IR信号传导的有趣发现,营养信号如何保持染色体
稳定仍然不确定。我们知识的这一差距为我们理解的关键障碍带来了
胰岛素在细胞增殖和分化及其对人类健康的影响,因为高胰岛素血症是
与包括2型糖尿病和癌症在内的各种疾病有关。钥匙主轴检查点蛋白MAD2
形成有丝分裂检查点复合物(MCC),并确保染色体隔离的保真度。我们最近
研究表明,MAD2与IR结合,通过组装类似MCC的复合物,募集网格蛋白适配器复合物。
并促进红外内吞作用。在未发表的结果中,我们发现IR-MAD2相互作用的破坏
小鼠在免疫细胞中增加了肾上腺素,并促进T细胞淋巴瘤。这些结果表明
主轴检查点调节剂和IR在有丝分裂和IR信号传导中相互调节。 ir和胰岛素 -
像生长因子1受体(IGF1R)一样,是高度同源的受体酪氨酸激酶(RTKS)。 IGF1R没有
与MAD2结合,其内吞作用机理和信号传导结果与IR不同。我们最近
定义了IR和IGF1R的不同激活机制,表明配体特异性诱导结构
差异可能会影响RTK的内吞作用和下游信号。与我们对角色的研究并行
IR信号传导中的主轴检查点蛋白的蛋白质,我们还进行了无偏的系统损失
使用CRISPR-CAS9的功能研究。我们确定了增加或降低表面水平的新型基因
IR和IR信号。在这里,我们建议结合小鼠遗传学,细胞生物学,生物化学,
基因组学和冷冻EM确定IR在有丝分裂中的功能以及IR信号的激活机制
用于细胞增殖与代谢。我们未来五年的目标是探讨以下问题:(1)
IR如何确保有丝分裂中准确的染色体分离,以及IR的生理功能是什么
在细胞分裂中; (2)IR如何选择性地激活PI3K-AKT与MAPK信号分支; (3)还有什么
IR功能在细胞增殖和分化中需要因素吗?拟议的研究集体
将促进我们对生理胰岛素作用功能,调节和机制的理解
细胞增殖和分化。此外,我们的研究可能会成为进一步翻译的基础
作为高胰岛素血症和2型糖尿病的研究和未来治疗剂与风险增加有关
对于某些癌症,也可能利用进行癌症免疫疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eunhee Choi其他文献
Eunhee Choi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eunhee Choi', 18)}}的其他基金
Spatiotemporal control of insulin signaling by mitotic regulators
有丝分裂调节剂对胰岛素信号传导的时空控制
- 批准号:
10668524 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
Investigation of the role of insulin receptor in chromosome stability.
研究胰岛素受体在染色体稳定性中的作用。
- 批准号:
10276187 - 财政年份:2021
- 资助金额:
$ 40.5万 - 项目类别:
Investigation of the role of insulin receptor in chromosome stability.
研究胰岛素受体在染色体稳定性中的作用。
- 批准号:
10629263 - 财政年份:2021
- 资助金额:
$ 40.5万 - 项目类别:
Investigation of the role of insulin receptor in chromosome stability.
研究胰岛素受体在染色体稳定性中的作用。
- 批准号:
10795222 - 财政年份:2021
- 资助金额:
$ 40.5万 - 项目类别:
相似国自然基金
皮层下母源复合体SCMC维持卵子基因组完整性的机制及在卵子老化过程中的作用
- 批准号:31801240
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
PLK1和Aurora-A的SUMO化修饰对年龄相关卵母细胞非整倍性的作用机制研究
- 批准号:31860329
- 批准年份:2018
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
老龄化卵子非整倍性产生的精确分子机制
- 批准号:81601274
- 批准年份:2016
- 资助金额:17.5 万元
- 项目类别:青年科学基金项目
水稻非整倍性基因组表达与表观遗传调控特征研究
- 批准号:31571266
- 批准年份:2015
- 资助金额:63.0 万元
- 项目类别:面上项目
诱导染色体不稳定与非整倍性的Ska1蛋白影响前列腺癌发生与发展的机制研究
- 批准号:81302235
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Defining the mechanisms by which NuMA drives spindle mechanical robustness
定义 NuMA 驱动主轴机械稳健性的机制
- 批准号:
10677401 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Mechanics of Cells & Tissues impact Chromosome Instability & Phagocytic Interactions
细胞力学
- 批准号:
10626283 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Grem1 and Grem2 in embryonic ovary development
Grem1 和 Grem2 在胚胎卵巢发育中的作用
- 批准号:
10584129 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别: