Integrating Health Records, Genomic, and Social Data to Stratify Adolescent Depression Risk
整合健康记录、基因组和社会数据对青少年抑郁症风险进行分层
基本信息
- 批准号:10459571
- 负责人:
- 金额:$ 19.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdolescenceAdolescentAdultAgeAlgorithmsAreaAwardBig DataBipolar DisorderBody mass indexCalibrationCaringCensusesClinicalClinical DataCodeCognitiveDataData ScienceData SetDetectionDevelopmentDiagnosticEarly InterventionElectronic Health RecordEnvironmentEpidemiologyEtiologyEventFoundationsGeneticGenetic Predisposition to DiseaseGenomeGenomicsGenotypeGoalsGoldGrantGuide preventionHealth systemHealthcare SystemsImpairmentIndividualInterventionK-Series Research Career ProgramsKnowledgeLabelLearningLifeLinkLogistic RegressionsMapsMeasuresMental DepressionMental HealthMental disordersMentorsMethodsModelingModernizationMorbidity - disease rateNational Institute of Mental HealthNeurotic DisordersOutcomePatientsPerformancePersonsPharmaceutical PreparationsPhenotypePopulationPositioning AttributePredictive AnalyticsPredictive ValuePrevalencePreventionPrevention strategyProceduresProviderPsychiatric epidemiologyPsychiatric therapeutic procedureRecurrenceResearchResearch PersonnelResearch TrainingResourcesRiskRisk FactorsSamplingSchizophreniaScienceScreening procedureSiteSolidStratificationStructureSupervisionSymptomsSystemTestingTrainingUnited StatesValidationWorkWorld Healthbasebehavioral healthbiobankbiomedical informaticsbridge programbrief prevention interventioncareerchild depressioncohortdepression preventiondepressive symptomsdeprivationdesigndisabilityepidemiology studyexperiencegenetic epidemiologygenomic datahealth care service utilizationhealth recordhigh dimensionalityhigh riskimprovedmachine learning methodmultidisciplinarynon-genomicnovelphenotyping algorithmpredictive modelingpreventprospectiverandom forestresearch studyresiliencerisk stratificationsocialsocial determinantssocial genomicsstatistical and machine learningstress related disordersubstance usesuicidal behaviorsupport vector machinetooltranslational research programunsupervised learning
项目摘要
PROJECT ABSTRACT
One in five adolescents in the United States will experience a depressive episode before age 18. Early prevention
could offset a lifetime of morbidity including work and social impairment, substance use, and suicidal behavior.
A critical step to preventing adolescent depression at a population level is the efficient detection of individuals
who could benefit most from targeted intervention. However, known risk factors (e.g., subthreshold symptoms,
cognitive styles, interpersonal factors) are often not widely assessed in practice until young people are presenting
for psychiatric care, and prospective risk screening tools built in traditional research studies remain poorly
implemented at scale in clinical settings where it may not be feasible for providers to routinely collect or integrate
additional measures. Large-scale, routine electronic health records (EHRs) from major health systems present
a powerful opportunity to overcome these prior limitations but have not yet been harnessed for adolescent
depression and often lack environmental and genetic data that may inform etiological understanding and risk
stratification. The overall aim of this K08 Career Development Award is to leverage large-scale EHR data with
linked genomic and social determinants to enhance the systematic identification of young people at elevated risk
of depression in real-world health settings. In this project, the candidate will develop and validate a novel
phenotype algorithm for identifying adolescent depression cases from a major healthcare system in the United
States containing up to 20 years of longitudinal EHR data for over six million individuals (Aim 1); integrate and
comprehensively assess a range of potential social and genomic determinants for EHR-based adolescent
depression (Aim 2); and apply modern statistical and machine learning methods to train and evaluate an initial
prospective risk stratification model for adolescent depression based on routine EHR data (Aim 3). Improving
the phenotyping and stratification of adolescent depression in EHRs will facilitate new avenues of research that
will be the basis of subsequent R-level grants that include external validation across health systems, refinement
of risk stratification and clinical trajectory models, and brief preventive interventions to enhance resilience in
those at risk. Supported by a solid foundation in psychiatric and genetic epidemiology and a multidisciplinary
team of world-class experts in an ideal environment, the candidate will acquire new expertise in predictive
analytics, biomedical informatics (specifically EHR-exposome-genome integration), adolescent depression and
prevention science through intensive mentored research and supervised training and professional development
activities. This Award will provide the necessary training for the candidate to develop into a fully independent
clinically informed investigator with a translational research program that bridges data science, statistical
genetics, and developmental epidemiology to inform actionable strategies for early depression prevention and
resilience promotion.
项目摘要
在美国,五分之一的青少年将在18岁之前经历抑郁发作。
可以抵消一生的发病率,包括工作和社会障碍,药物使用和自杀行为。
防止在人口水平上预防青少年抑郁症的关键步骤是对个体的有效检测
谁可以从目标干预中受益最大。但是,已知的危险因素(例如,亚阈值症状,
认知风格,人际关系因素)在实践中通常不会被广泛评估,直到年轻人呈现
用于精神病护理以及在传统研究中建立的潜在风险筛查工具仍然很差
在临床环境中以大规模实施,在临床环境中,提供者常规收集或集成可能是不可行的
其他措施。来自主要卫生系统的大规模常规电子健康记录(EHR)
克服这些先前限制的有力机会,但尚未为青少年提供。
抑郁症,常常缺乏环境和遗传数据,这可能会为病因理解和风险提供信息
分层。这个K08职业发展奖的总体目的是利用大规模的EHR数据
相关的基因组和社会决定因素,以增强风险较高的年轻人的系统识别
现实世界中的抑郁症。在这个项目中,候选人将开发并验证一本小说
用于识别联合主要医疗系统的青少年抑郁症病例的表型算法
超过600万个人的纵向EHR数据最多包含20年的州(AIM 1);集成和
全面评估基于EHR的青少年的一系列潜在社会和基因组决定因素
抑郁(目标2);并应用现代统计和机器学习方法来训练和评估初始
基于常规EHR数据的青少年抑郁症的前瞻性风险分层模型(AIM 3)。改进
EHR中青少年抑郁症的表型和分层将促进新的研究途径
将是随后的R级赠款的基础,包括跨卫生系统的外部验证,改进
风险分层和临床轨迹模型以及简短的预防干预措施,以增强弹性
那些有危险的人。得到精神病和遗传流行病学和多学科的坚实基础的支持
世界一流的专家团队在理想环境中,候选人将获得预测性的新专业知识
分析,生物医学信息学(特别是EHR- exposom-Genome综合),青少年抑郁症和
通过密集的指导研究和监督培训和专业发展的预防科学
活动。该奖项将为候选人提供必要的培训,使候选人发展为完全独立的
临床知情的研究者通过翻译研究计划,该计划桥接数据科学,统计
遗传学和发育流行病学,以告知可行的早期抑郁症和预防策略
弹性促进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karmel Choi其他文献
Karmel Choi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karmel Choi', 18)}}的其他基金
Integrating Health Records, Genomic, and Social Data to Stratify Adolescent Depression Risk
整合健康记录、基因组和社会数据对青少年抑郁症风险进行分层
- 批准号:
10671034 - 财政年份:2021
- 资助金额:
$ 19.75万 - 项目类别:
Integrating Health Records, Genomic, and Social Data to Stratify Adolescent Depression Risk
整合健康记录、基因组和社会数据对青少年抑郁症风险进行分层
- 批准号:
10284131 - 财政年份:2021
- 资助金额:
$ 19.75万 - 项目类别:
相似国自然基金
自然接触对青少年网络问题行为的作用机制及其干预
- 批准号:72374025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
大气污染物对青少年心理健康的影响机制研究
- 批准号:42377437
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
心肺耐力对青少年执行功能影响效应及其特定脑区激活状态的多民族研究
- 批准号:82373595
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
中国父母情绪教养行为对青少年非自杀性自伤的影响及其机制
- 批准号:32300894
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
执行技能训练联合动机行为治疗对注意缺陷多动障碍青少年疗效及脑机制
- 批准号:82371557
- 批准年份:2023
- 资助金额:65 万元
- 项目类别:面上项目
相似海外基金
Parent-adolescent informant discrepancies: Predicting suicide risk and treatment outcomes
父母与青少年信息差异:预测自杀风险和治疗结果
- 批准号:
10751263 - 财政年份:2024
- 资助金额:
$ 19.75万 - 项目类别:
Probiotic Administration for Adolescent Depression
益生菌治疗青少年抑郁症
- 批准号:
10646130 - 财政年份:2023
- 资助金额:
$ 19.75万 - 项目类别:
Exploratory Analysis Tools for Developmental Studies of Brain Microstructure with Diffusion MRI
利用扩散 MRI 进行脑微结构发育研究的探索性分析工具
- 批准号:
10645844 - 财政年份:2023
- 资助金额:
$ 19.75万 - 项目类别: