Functional Interrogation Of Ribosomal Biology Using Continuous Evolution
利用连续进化对核糖体生物学进行功能探究
基本信息
- 批准号:10459135
- 负责人:
- 金额:$ 44.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimal ModelAntibiotic ResistanceAntibioticsBacteriaBacteriophagesBiochemicalBiocompatible MaterialsBiogenesisBiologicalBiological PhenomenaBiologyBiomedical ResearchCellsChemicalsClinical TrialsCodeCombined Modality TherapyDefectDevelopmentDirected Molecular EvolutionDrug resistanceEngineeringEscherichia coliEventEvolutionFutureGap JunctionsGenerationsGenesGeneticGenetic TranscriptionGleanGrowthInterventionKineticsKnowledgeLifeLinkMediatingMedicalMethodologyMinorModelingModificationMolecularMorphologic artifactsMulti-Drug ResistanceMutationNatural ProductsNatureNetwork-basedNutrientOutputPeptidyltransferasePlayProductionPropertyProtein Synthesis InhibitionProteinsReal-Time SystemsRegulationResearchResearch PersonnelResistanceResistance profileResource AllocationRibosomal InteractionRibosomal RNARibosomesRoleSignal TransductionStimulusStructureStructure-Activity RelationshipSystemTechniquesTechnologyTherapeuticTimeTranslatingTranslation InitiationTranslationsVariantWorkantimicrobialbasedesigndynamic systemfitnesshigh throughput screeningimprovedin vivoin vivo monitoringinnovationmicrobialnovelnovel strategiesnovel therapeuticspathogenic bacteriarapid techniquereal time monitoringresistance mechanismresponsescaffoldsensorsmall molecule
项目摘要
FUNCTIONAL INTERROGATION OF RIBOSOMAL BIOLOGY USING CONTINUOUS EVOLUTION
PROJECT SUMMARY/ABSTRACT:
In nature, fundamental biological phenomena that are central to cellular life are inherently hindered from
probing and interrogation, as these dynamic systems cannot be easily decoupled from immediate artifactual
disruptions throughout the living cell. One such case is the ribosome, a colossal multi-component protein
factory that functions as the nexus for cellular information and signaling events, integrating nutrient availability
with growth dynamics and resource allocation. Despite decades of research, this biomolecular assembly
remains superficially understood and underexplored, owing to the difficulty associated with decoupling the
translational apparatus from cellular viability. In fact, there is currently no generalizable experimental tool-kit for
unbiased high-throughput interrogation of the structure-activity and functional relationships of the ribosome, the
prediction of ribosome-small molecule interactions, or the identification of disruptive resistance mechanisms.
The work proposed herein seeks to overcome the challenges associated with ribosomal manipulation in vivo,
to illuminate the relationship between the rRNA and the effective translation initiation/elongation rates as they
relate to growth fitness, and to provide an innovative framework for the interrogation of ribosome-small
molecule interactions. The proposed work focuses on the development of a fully orthogonal ribosomal system
for the real-time monitoring of ribosome activity in living cells through engineered transcription-translation
networks based on independently tunable genetic components at all stages. The designed orthogonal sensor
ribosomes will be subjected to directed evolution yielding novel variants with enhanced or diminished kinetic
properties. To achieve this, the orthogonal ribosome circuit will be interfaced with an emergent technique
based on a continuous culturing methodology called Phage-Assisted Continuous Evolution (PACE), facilitating
hundreds of rounds of directed evolution in just a few days with minimal researcher intervention. Finally, to
demonstrate the utility of the newly developed ribosomal sensors and the evolutionary platform, this technology
will be leveraged to inform antibiotic-ribosome interactions, and to generate actionable drug resistance profiles
for delaying or evading microbial resistance. This platform will be extended to high-throughput screening
campaigns for novel chemical scaffolds capable of modulating ribosomal translation through potentially
undiscovered modes of action. Broadly, our ability to harness bacteria for biomedical and biomaterial
applications in the future will hinge on the detailed understanding of the mechanistic control and optimization of
ribosomal output parameters enabled by these studies. The technological advances proposed herein have the
potential to extend our understanding of key factors governing ribosomal function and dynamics, and will pave
the way towards the development of novel mechanisms that will illuminate and enhance new approaches in
biomedical research and targeted antimicrobial therapeutics.
利用持续进化对核糖体生物学进行功能研究
项目摘要/摘要:
在自然界中,作为细胞生命核心的基本生物现象本质上受到阻碍
探测和询问,因为这些动态系统不能轻易地与直接的人工制品脱钩
整个活细胞的破坏。其中一个例子是核糖体,一种巨大的多组分蛋白质
工厂充当细胞信息和信号事件的纽带,整合营养物质的可用性
增长动力和资源配置。尽管经过了数十年的研究,这种生物分子组装
由于与解耦相关的困难,仍然被肤浅地理解和探索不足
来自细胞活力的翻译装置。事实上,目前还没有通用的实验工具包
对核糖体的结构-活性和功能关系进行无偏高通量询问,
预测核糖体-小分子相互作用,或识别破坏性抗性机制。
本文提出的工作旨在克服与体内核糖体操作相关的挑战,
阐明 rRNA 与有效翻译起始/延伸率之间的关系
与生长适应性相关,并为小核糖体的研究提供创新框架
分子相互作用。拟议的工作重点是开发完全正交的核糖体系统
通过工程转录翻译实时监测活细胞中的核糖体活性
基于各个阶段独立可调遗传成分的网络。正交传感器设计
核糖体将进行定向进化,产生具有增强或减弱动力学的新变体
特性。为了实现这一目标,正交核糖体电路将与新兴技术相连接
基于称为噬菌体辅助连续进化(PACE)的连续培养方法,促进
只需最少的研究人员干预,即可在短短几天内完成数百轮定向进化。最后,为了
展示新开发的核糖体传感器和进化平台的实用性,该技术
将被用来告知抗生素-核糖体相互作用,并生成可操作的耐药性概况
用于延迟或避免微生物耐药性。该平台将扩展到高通量筛选
寻找能够通过潜在的方式调节核糖体翻译的新型化学支架的活动
未被发现的行动模式。从广义上讲,我们利用细菌进行生物医学和生物材料的能力
未来的应用将取决于对机械控制和优化的详细理解
这些研究启用了核糖体输出参数。本文提出的技术进步具有
有潜力扩展我们对控制核糖体功能和动力学的关键因素的理解,并将铺平道路
开发新机制的途径将阐明和加强新方法
生物医学研究和靶向抗菌治疗。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Orthogonal translation enables heterologous ribosome engineering in E. coli.
- DOI:10.1038/s41467-020-20759-z
- 发表时间:2021-01-26
- 期刊:
- 影响因子:16.6
- 作者:Kolber NS;Fattal R;Bratulic S;Carver GD;Badran AH
- 通讯作者:Badran AH
Directed evolution of rRNA improves translation kinetics and recombinant protein yield.
- DOI:10.1038/s41467-021-25852-5
- 发表时间:2021-09-24
- 期刊:
- 影响因子:16.6
- 作者:Liu F;Bratulić S;Costello A;Miettinen TP;Badran AH
- 通讯作者:Badran AH
Modern methods for laboratory diversification of biomolecules.
- DOI:10.1016/j.cbpa.2017.10.010
- 发表时间:2017-12
- 期刊:
- 影响因子:7.8
- 作者:Bratulic S;Badran AH
- 通讯作者:Badran AH
Synthetic Biological Circuits within an Orthogonal Central Dogma.
- DOI:10.1016/j.tibtech.2020.05.013
- 发表时间:2021-01
- 期刊:
- 影响因子:17.3
- 作者:Costello A;Badran AH
- 通讯作者:Badran AH
Natural and engineered precision antibiotics in the context of resistance.
- DOI:10.1016/j.cbpa.2022.102160
- 发表时间:2022-05
- 期刊:
- 影响因子:7.8
- 作者:Chad W. Johnston;A. Badran
- 通讯作者:Chad W. Johnston;A. Badran
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmed Hussein Badran其他文献
Ahmed Hussein Badran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmed Hussein Badran', 18)}}的其他基金
Functional Interrogation Of Ribosomal Biology Using Continuous Evolution
利用连续进化对核糖体生物学进行功能探究
- 批准号:
9553875 - 财政年份:2017
- 资助金额:
$ 44.38万 - 项目类别:
Functional Interrogation Of Ribosomal Biology Using Continuous Evolution
利用连续进化对核糖体生物学进行功能探究
- 批准号:
9593383 - 财政年份:2017
- 资助金额:
$ 44.38万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
基于中枢胰岛素抵抗探讨自噬失调对肾虚阿尔茨海默的影响及机制研究
- 批准号:81803854
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 44.38万 - 项目类别:
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
- 批准号:
10636329 - 财政年份:2023
- 资助金额:
$ 44.38万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 44.38万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 44.38万 - 项目类别:
Defining the Role of Enteric Nervous System Dysfunction in Gastrointestinal Motor and Sensory Abnormalities in Down Syndrome
确定肠神经系统功能障碍在唐氏综合症胃肠运动和感觉异常中的作用
- 批准号:
10655819 - 财政年份:2023
- 资助金额:
$ 44.38万 - 项目类别: