A fully automated PET radiomics framework
全自动 PET 放射组学框架
基本信息
- 批准号:10458241
- 负责人:
- 金额:$ 49.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-06 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmerican College of Radiology Imaging NetworkAnatomyBiological MarkersBiologyCause of DeathCharacteristicsClinicalClinical TrialsComputer softwareDataData SetDiscipline of Nuclear MedicineDiseaseEngineeringEvaluationGoalsGoldHeterogeneityImageKnowledgeLeadMalignant NeoplasmsMalignant neoplasm of thoraxManualsMeasurementMeasuresMedicalMedical OncologistMetabolicMethodsMolecularMulticenter TrialsNoiseNon-Small-Cell Lung CarcinomaOutcomePET/CT scanPatientsPhysicsPositron-Emission TomographyPrediction of Response to TherapyProceduresProcessProgression-Free SurvivalsPropertyProtocols documentationQuality of lifeRadiation Therapy Oncology GroupReaderRegimenReproducibilityResolutionRetrospective StudiesRoleSmoking HistoryTechniquesTimeToxic effectTrainingTranslatingTreatment Costbasebiomarker developmentbiomarker discoverycancer imagingchemoradiationclinical applicationclinical translationdeep learningearly detection biomarkersefficacy evaluationfluorodeoxyglucose positron emission tomographyimaging modalityimaging scientistimprovedin vivomortalitymultidisciplinarynoveloptimal treatmentspatient orientedpersonalized medicineprecision medicineprognostic valuequantitative imagingradiologistradiomicsreconstructionresponsesimulationtheoriestumor
项目摘要
Summary
The overall goal of this proposal is to develop a fully automated PET radiomics framework and evaluate the
efficacy of PET radiomic features (RFs) derived from this framework in predicting therapy response in patients
with stage III non-small cell lung cancer (NSCLC). Radiomics is showing exciting promise in deriving biomarkers
for several diseases. The potential to measure and evaluate the efficacy of radiomic features derived from PET
for early prediction of therapy response is highly impactful since PET probes the functional characteristics of the
tumor, where changes are manifested sooner in comparison to anatomical changes. However, PET images have
high noise and limited resolution, which leads to inaccurate and imprecise RF measurements that then have
limited clinical value. Previously we have developed techniques to optimize quantitative imaging methods and
shown that these can help estimate more reliable quantitative metrics leading to better predictive ability with
these metrics. Building on these past studies and by combining concepts from imaging physics, statistical
inference theory, deep learning, we propose to develop methods that accurately and precisely estimate RFs
from PET. These methods will include a fully automated PET segmentation method that will enable reliable
delineation of tumor boundaries using a practical approach. Next, a no-gold-standard (NGS) evaluation
technique will be developed to optimize RF quantification protocols. This technique will provide a mechanism for
precise measurement of RFs from PET images without access to the ground truth RF value. The methods will
be rigorously validated in the context of measuring radiomics features in patients with NSCLC using a
combination of realistic simulations, physical phantom studies and existing patient data. Select RFs will then be
retrospectively evaluated on predicting therapy response using existing data the ACRIN 6697 longitudinal clinical
trial in patients with stage III NSCLC. A strong multidisciplinary team has been assembled for this project,
consisting of an imaging scientist, clinical nuclear-medicine radiologists, medical oncologist with expertise in
biomarker development for thoracic malignancies and biology of NSCLC, biostatistician, and a medical physicist.
The proposed methods are poised to have a strong impact on PET radiomics by enabling measurement of
precise and accurate RFs, and by facilitating the clinical translation of PET radiomics. The impact is strengthened
as we investigate the predictive ability of the PET RFs in patients with stage III NSCLC, a leading cause of death
with low overall survival, and with an important and timely need for improved personalized therapy regimens.
Further, the methods developed in this project are general and potentially impact precision-medicine approaches
for other cancers as well as other diseases where PET imaging has a clinical role.
概括
该提案的总体目标是开发一个完全自动化的宠物放射线框架并评估
从该框架预测患者治疗反应的PET放射素特征(RFS)的功效
III期非小细胞肺癌(NSCLC)。放射线学在推导生物标志物方面表现出令人兴奋的希望
对于几种疾病。测量和评估源自PET的放射性特征的功效的潜力
为了早期预测治疗反应是高度影响的,因为PET探究了该功能特征
肿瘤,与解剖学变化相比,变化更快。但是,宠物图像有
高噪声和有限的分辨率,导致不准确和不精确的RF测量结果
有限的临床价值。以前,我们已经开发了技术来优化定量成像方法和
表明这些可以帮助估计更可靠的定量指标,从而通过
这些指标。基于这些过去的研究并结合成像物理学的概念,统计
推论理论,深度学习,我们建议开发准确,精确估计RFS的方法
来自宠物。这些方法将包括一种全自动的宠物分割方法,该方法将启用可靠
使用实用方法描述肿瘤边界。接下来,无金牌标准(NGS)评估
将开发技术来优化RF定量协议。该技术将为
从PET图像中精确测量RF,而无需访问地面真相RF值。方法将
在使用A的NSCLC患者中测量放射线特征的背景下,请严格验证
现实模拟,物理幻影研究和现有患者数据的结合。选择RF将是
回顾性评估了使用现有数据ACRIN 6697纵向临床评估的评估
III期NSCLC患者的试验。一个强大的多学科团队已经为这个项目组成了
由成像科学家,临床核药物放射学家,具有专业知识的医学肿瘤学家组成
NSCLC,生物统计学家和医学物理学家的胸腔恶性肿瘤和生物学的生物标志物开发。
提出的方法有望通过启用测量来对PET放射线学产生强大影响
精确,准确的RF,并通过促进PET放射素学的临床翻译。影响得到加强
当我们研究PET RFS在III期NSCLC患者中的预测能力时,死亡的主要原因
总体生存率较低,并且需要改善个性化治疗方案的重要和及时的需求。
此外,该项目中开发的方法是一般的,并且潜在地影响了精度中等医学方法
对于其他癌症以及宠物成像具有临床作用的其他疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abhinav K Jha其他文献
Abhinav K Jha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abhinav K Jha', 18)}}的其他基金
Ultra-Low Count Quantitative SPECT for Alpha-Particle Therapies
用于 α 粒子治疗的超低计数定量 SPECT
- 批准号:
10446871 - 财政年份:2022
- 资助金额:
$ 49.29万 - 项目类别:
Ultra-Low Count Quantitative SPECT for Alpha-Particle Therapies
用于 α 粒子治疗的超低计数定量 SPECT
- 批准号:
10704042 - 财政年份:2022
- 资助金额:
$ 49.29万 - 项目类别:
A no-gold-standard framework to objectively evaluate quantitative imaging methods with patient data
利用患者数据客观评估定量成像方法的非金标准框架
- 批准号:
10375582 - 财政年份:2021
- 资助金额:
$ 49.29万 - 项目类别:
A no-gold-standard framework to objectively evaluate quantitative imaging methods with patient data
利用患者数据客观评估定量成像方法的非金标准框架
- 批准号:
10553677 - 财政年份:2021
- 资助金额:
$ 49.29万 - 项目类别:
A framework to quantify and incorporate uncertainty for ethical application of AI-based quantitative imaging in clinical decision making
量化和纳入基于人工智能的定量成像在临床决策中的伦理应用的不确定性的框架
- 批准号:
10599754 - 财政年份:2021
- 资助金额:
$ 49.29万 - 项目类别:
A no-gold-standard framework to objectively evaluate quantitative imaging methods with patient data
利用患者数据客观评估定量成像方法的非金标准框架
- 批准号:
10185997 - 财政年份:2021
- 资助金额:
$ 49.29万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
MRI Radiomic Signatures of DCIS to Optimize Treatment
DCIS 的 MRI 放射学特征可优化治疗
- 批准号:
10537149 - 财政年份:2022
- 资助金额:
$ 49.29万 - 项目类别:
MRI Radiomic Signatures of DCIS to Optimize Treatment
DCIS 的 MRI 放射学特征可优化治疗
- 批准号:
10655641 - 财政年份:2022
- 资助金额:
$ 49.29万 - 项目类别:
Social genomic mechanisms of health disparities among Adolescent and Young Adult (AYA) cancer survivors
青少年和青年(AYA)癌症幸存者健康差异的社会基因组机制
- 批准号:
10272690 - 财政年份:2021
- 资助金额:
$ 49.29万 - 项目类别:
Social genomic mechanisms of health disparities among Adolescent and Young Adult (AYA) cancer survivors
青少年和青年(AYA)癌症幸存者健康差异的社会基因组机制
- 批准号:
10487418 - 财政年份:2021
- 资助金额:
$ 49.29万 - 项目类别:
Comparative Modeling of Precision Breast Cancer Control Across the Translational Continuum
跨转化连续体的乳腺癌精准控制的比较模型
- 批准号:
10251326 - 财政年份:2020
- 资助金额:
$ 49.29万 - 项目类别: