Structure and function of a metabolic pacemaker in bacterial cell membrane
细菌细胞膜代谢起搏器的结构和功能
基本信息
- 批准号:10457395
- 负责人:
- 金额:$ 31.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:Active SitesAnabolismAnaerobic BacteriaAntibiotic ResistanceAttenuatedBacteriaBacterial InfectionsBindingBinding SitesBiochemicalBiochemistryBiological AssayCalorimetryCarbonCatalysisCell SurvivalCell membraneChemicalsChemistryCommunicable DiseasesComputer ModelsCryoelectron MicroscopyCrystallizationCysteineDataDevelopmentDiffusionDisease ResistanceDisulfidesEnvironmentEnzymesEquilibriumEscherichia coliEukaryotaFamilyFermentationFluorescenceFluorescence Resonance Energy TransferGene ExpressionGenetic TranscriptionGlucoseGlucose TransporterGlutathioneGlutathione DisulfideGlycolysisGram-Negative BacteriaGrowthHomeostasisHomologous ProteinIn SituIn VitroIntegral Membrane ProteinIntracellular MembranesLabelLeadLipid BilayersLipidsMeasuresMediatingMembraneMetabolicMetabolic PathwayMetabolismMethodsMicrobiologyMolecularMolecular ConformationMonitorMutationOxidation-ReductionOxidesPacemakersPathway interactionsPhosphatidylglycerolsPhospholipidsPhosphoric Monoester HydrolasesProkaryotic CellsProtein ConformationProtein phosphataseProteinsRegulationReportingResolutionRoentgen RaysRoleSignal TransductionSiteStructureSurfaceTestingTitrationsVirulenceX-Ray CrystallographyYangaminoacid biosynthesisantimicrobialbacterial metabolismbasecell growthcell typecrosslinkdimerfamily structuregenetic approachglucose uptakeinorganic phosphateinsightmetabolomicsmicroorganismmutantnanodisknovelnovel therapeutic interventionparticlepathogenpreventresponseunnatural amino acidsvapor
项目摘要
Abstract
Glycolysis constitutes one of the most important metabolic pathways conserved in both eukaryotes and
prokaryotes. In the pathway, glucose is broken down to form small 3-carbon phosphate metabolites essential for
cell growth and survival. In microorganisms, properly maintaining glycolysis is important for the development of
bacterial infection and virulence and antibiotic resistance. In this project, we aim to study the structure and
function of phosphatidylglycerol phosphatase PgpA to elucidate a novel regulatory mechanism of glycolysis in
bacterium. PgpA is an integral membrane protein ubiquitously found in Gram-negative bacterium. We found that
PgpA functions as a moonlighting enzyme; i.e. PgpA is not only involved in phospholipid biosynthesis but also
acts as an essential metabolic regulator by hydrolyzing the key 3-carbon phosphate glycolytic metabolites in E.
coli. Mutational inactivation of PgpA in E. coli greatly facilitates bacterial metabolism and growth. We have also
identified a novel redox-regulatory mechanism of PgpA, which is important to maintain bacterial metabolic
homeostasis. Our findings raise the hypothesis for a redox-mediated regulatory mechanism in which PgpA
regulates bacterial glycolysis by controlling glutathione-mediated redox balance based on external and internal
metabolic signals. This regulatory mechanism is novel and has not yet been reported in any cell type. To further
understand this regulatory mechanism, we will study how PgpA controls bacterial glucose uptake and regulate
glycolytic activity using a combination of biochemistry, microbiology, and metabolomic approaches.To
understand how PgpA regulates intracellular redox balance, we will examine glutathione biosynthesis and
monitor redox changes on the membrane surface of PgpA to demonstrate how PgpA uses an integrative “Ying-
Yang” mechanism to achieve both metabolic homeostasis and redox balance. We also found the redox-mediated
regulation of PgpA is mediated by dimeric disulfide crosslinking within PgpA dimer. To gain structural insights
into this novel redox-regulated catalytic mechanism, we will study the catalytic activity of PgpA and co-factor
Mg2+ binding in response to redox changes in vitro using biochemical assays. We will also study this molecular
mechanism using FRET to demonstrate how dimeric crosslinking alters protein conformation to allosterically
change the active site conformation in order to control the PgpA catalysis. Since no structure is available in the
PgpA family, we will determine the structures of PgpA in two distinct redox (active/inactivated) states using the
X-ray crystallography and single-particle cryoEM approaches to establish a structural basis for the redox-
regulated catalytic mechanism of PgpA. This mechanism is conserved in many Gram-negative pathogens. Our
studies will reveal an important mechanism to understand metabolic regulation in microorganisms.
抽象的
糖酵解构成构成的最重要的代谢途径之一,在真核生物和
原核生物。在途径中,葡萄糖被分解以形成小的3碳磷酸代谢产物
细胞生长和生存。在微生物中,适当维持糖酵解对于发展很重要
细菌感染和毒力和抗生素耐药性。在这个项目中,我们旨在研究结构和
磷脂酰甘油磷酸酶PGPA的功能阐明了糖酵解中新型调节机制
细菌。 PGPA是一种在革兰氏阴性细菌中普遍存在的整体膜蛋白。我们发现
PGPA充当月光酶;即PGPA不仅参与磷脂生物合成,而且还参与
通过水解E.
大肠杆菌。大肠杆菌中PGPA的突变灭活极为最喜欢的细菌代谢和生长。我们也有
确定了一种新型PGPA的氧化还原调节机制,这对于维持细菌代谢很重要
稳态。我们的发现提出了氧化还原介导的调节机制的假设,其中PGPA
通过控制谷胱甘肽介导的氧化还原平衡来调节细菌糖酵解的基于外部和内部的氧化还原平衡
代谢信号。这种调节机制是新颖的,尚未在任何细胞类型中报道。进一步
了解这种调节机制,我们将研究PGPA如何控制细菌葡萄糖摄取并调节
使用生物化学,微生物学和代谢组方法的结合。
了解PGPA如何调节细胞内氧化还原平衡,我们将检查谷胱甘肽生物合成和
监视PGPA膜表面上的氧化还原变化,以证明PGPA如何使用综合性“ ying--
YANG”的机制可以达到代谢稳态和氧化还原平衡。我们还发现了氧化还原介导的
PGPA的调节是由PGPA二聚体内的二聚体二硫化物交联介导的。获得结构见解
进入这种新型氧化还原调节的催化机制,我们将研究PGPA和副因素的催化活性
MG2+结合响应于使用生化测定的体外氧化还原变化的响应。我们还将研究这个分子
使用FRET的机制来证明二聚体交联如何改变蛋白质对变构的构素
更改活动位点构象以控制PGPA催化剂。由于没有结构
PGPA家族,我们将使用使用该态的两个不同的氧化还原(活跃/灭活)状态确定PGPA的结构
X射线晶体学和单粒子冷冻方法,以建立氧化还原的结构基础
PGPA的调节催化机制。这种机制在许多革兰氏阴性病原体中都是保守的。我们的
研究将揭示一种了解微生物中代谢调节的重要机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Zheng其他文献
Lei Zheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lei Zheng', 18)}}的其他基金
Structure and function of a metabolic pacemaker in bacterial cell membrane
细菌细胞膜代谢起搏器的结构和功能
- 批准号:
10280369 - 财政年份:2021
- 资助金额:
$ 31.98万 - 项目类别:
Integration of stromal targeting agents with immune checkpoint therapy
基质靶向剂与免疫检查点疗法的整合
- 批准号:
10408084 - 财政年份:2021
- 资助金额:
$ 31.98万 - 项目类别:
Structure and function of a metabolic pacemaker in bacterial cell membrane
细菌细胞膜代谢起搏器的结构和功能
- 批准号:
10652472 - 财政年份:2021
- 资助金额:
$ 31.98万 - 项目类别:
Integration of stromal targeting agents with immune checkpoint therapy
基质靶向剂与免疫检查点疗法的整合
- 批准号:
10661808 - 财政年份:2021
- 资助金额:
$ 31.98万 - 项目类别:
Structure and function of a metabolic pacemaker in bacterial cell membrane
细菌细胞膜代谢起搏器的结构和功能
- 批准号:
10796719 - 财政年份:2021
- 资助金额:
$ 31.98万 - 项目类别:
Annexin A2 as a mediator of pancreatic cancer metastases
膜联蛋白 A2 作为胰腺癌转移的介质
- 批准号:
8579467 - 财政年份:2013
- 资助金额:
$ 31.98万 - 项目类别:
Annexin A2 as a mediator of pancreatic cancer metastases
膜联蛋白 A2 作为胰腺癌转移的介质
- 批准号:
8712421 - 财政年份:2013
- 资助金额:
$ 31.98万 - 项目类别:
Interrogate the interaction between tumor cells and nerves in the tumor microenvironment of pancreatic cancer
探究胰腺癌肿瘤微环境中肿瘤细胞与神经之间的相互作用
- 批准号:
9764752 - 财政年份:2013
- 资助金额:
$ 31.98万 - 项目类别:
Interrogate the interaction between tumor cells and nerves in the tumor microenvironment of pancreatic cancer
探究胰腺癌肿瘤微环境中肿瘤细胞与神经之间的相互作用
- 批准号:
10578764 - 财政年份:2013
- 资助金额:
$ 31.98万 - 项目类别:
Interrogate the interaction between tumor cells and nerves in the tumor microenvironment of pancreatic cancer
探究胰腺癌肿瘤微环境中肿瘤细胞与神经之间的相互作用
- 批准号:
10358637 - 财政年份:2013
- 资助金额:
$ 31.98万 - 项目类别:
相似国自然基金
厌氧菌藻生物膜降解噻唑化合物的氢营养代谢机理研究
- 批准号:52300043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
海洋弯孢霉菌丝形态对抗厌氧菌化合物Curvulamine发酵过程的调控及机制研究
- 批准号:41876189
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
氢气在厌氧菌群己酸合成代谢中的调控机制解析
- 批准号:21506076
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
高温厌氧菌Rx1的ldh、pta基因对乙醇代谢的调控机理
- 批准号:21366015
- 批准年份:2013
- 资助金额:50.0 万元
- 项目类别:地区科学基金项目
乙醇发酵途径中关键调节蛋白RSP的X光结构和功能研究
- 批准号:31200053
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Structure and function of a metabolic pacemaker in bacterial cell membrane
细菌细胞膜代谢起搏器的结构和功能
- 批准号:
10280369 - 财政年份:2021
- 资助金额:
$ 31.98万 - 项目类别:
Structural Characterization of AdoMet Radical Enzyme-Catalyzed Posttranslational Modifications in Bacterial Anaerobic Metabolism
细菌厌氧代谢中 AdoMet 自由基酶催化的翻译后修饰的结构表征
- 批准号:
10057221 - 财政年份:2019
- 资助金额:
$ 31.98万 - 项目类别:
Structural Characterization of AdoMet Radical Enzyme-Catalyzed Posttranslational Modifications in Bacterial Anaerobic Metabolism
细菌厌氧代谢中 AdoMet 自由基酶催化的翻译后修饰的结构表征
- 批准号:
10246524 - 财政年份:2019
- 资助金额:
$ 31.98万 - 项目类别:
Structural Characterization of AdoMet Radical Enzyme-Catalyzed Posttranslational Modifications in Bacterial Anaerobic Metabolism
细菌厌氧代谢中 AdoMet 自由基酶催化的翻译后修饰的结构表征
- 批准号:
9756675 - 财政年份:2019
- 资助金额:
$ 31.98万 - 项目类别:
Transformed Probiotic Bacteria for Treatment of Chronic Diseases
用于治疗慢性疾病的转化益生菌
- 批准号:
7431222 - 财政年份:2007
- 资助金额:
$ 31.98万 - 项目类别: