Frataxin deficiency as a cause of endothelial senescence in multiple subtypes of pulmonary hypertension
Frataxin 缺乏是多种肺动脉高压亚型内皮衰老的原因
基本信息
- 批准号:10450703
- 负责人:
- 金额:$ 61.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AtaxiaAutomobile DrivingBindingBinding ProteinsBiogenesisBlood VesselsCardiomyopathiesCell AgingCell Cycle ArrestCell LineCell ProliferationCellsCellular biologyConfusionDNA DamageDataDependovirusDevelopmentDiseaseDisease modelDoseEndothelial CellsEndotheliumEvolutionFriedreich AtaxiaFunctional disorderFundingGSTP1 geneGeneticGenetically Engineered MouseGenomicsGenotoxic StressHeart AtriumHeart DiseasesHematological DiseaseHeterogeneityHistologyHumanHypertrophic CardiomyopathyHypoxiaInflammationInflammatoryInterleukin-6Knock-outKnockout MiceLeftLinkLungMetabolic dysfunctionMitochondriaModelingMolecularMutationMyelogenousMyeloid CellsNuclearPatientsPharmaceutical PreparationsPhenotypePlasmaProteinsPulmonary HypertensionPulmonary artery structureRegulationReportingRodentRoleShapesShunt DeviceSignal TransductionSpecimenStressSulfurSulofenurSyndromeTechnologyTransgenic OrganismsWorkanalogcell typecohortcytokinedrug efficacyendothelial stem cellfrataxingenome editingimprovedin vivoinduced pluripotent stem cellinhibitoriron deficiencymitochondrial metabolismmouse modelnovelnovel therapeuticspreventpulmonary arterial pressurepulmonary vascular disorderpulmonary vascular remodelingreplication stresssenescencesingle-cell RNA sequencingtherapeutic development
项目摘要
Background: Endothelial cell (EC) pathobiology drives pulmonary hypertension (PH), but confusion over the
evolution of EC phenotypes in this disease has persisted for decades. EC senescence, a state of stable cell
cycle arrest, has been reported in PH, but the regulatory features are unknown. Led by our prior work showing
deficiency of iron-sulfur (Fe-S) clusters in PH, we found that a Fe-S biogenesis protein, frataxin (FXN), controls
senescence in pulmonary ECs. This may occur in Friedreich’s ataxia (FRDA), a disease marked by genetic
FXN deficiency, cardiomyopathy, and often PH. Here, we offer a new model of EC biology in PH, where FXN
loss promotes genotoxic stress and senescence in a pulmonary EC subset with low enough FXN. Senescent
ECs then promote inflammation and drive many PH subtypes, including PH of FRDA and left heart disease.
Hypothesis: We propose FXN deficiency, driven by genetic or acquired means, orchestrates Fe-S-dependent
genotoxic stress, enforcing EC senescence and multiple PH subtypes. Aim 1. Determine if FXN deficiency
drives DNA damage to enforce EC senescence. By study of human pulmonary artery and microvascular ECs
and via genome editing of FXN mutations in inducible pluripotent stem cell (iPSC)-derived ECs from FRDA
patients, we will study the role of FXN in genomic stress and EC senescence. Via study of circulating factors,
histology, and single cell RNA sequencing, we will assess EC senescence in plasma and rare lung specimens
from PAH patients and FRDA and HCM patients with pulmonary vascular disease. We expect to see a dose-
dependent orchestration of FXN activities converging on EC senescence and PH. Aim 2. Determine if EC FXN
deficiency depends upon senescence and myeloid inflammation to drive PH. In mice models of Groups 1
PAH and Group 2 PH due to FRDA, by using EC FXN-/- (KO) technology and adeno-associated virus delivery
of FXN and its binding partner ISCU to pulmonary ECs in vivo, we will assess EC genomic stress, senescence,
inflammation, and PH. EC-specific p16 KO mice and CX3CR1 KO mice will be used to define if EC FXN depends
upon senescence and downstream myeloid inflammation to control PH. Thus, we aim to prove a new causative
model of EC biology in PH – one that deconvolutes the confusion over EC heterogeneity that has plagued this
field for decades. Aim 3. Determine if a novel GSTP1 inhibitor increases FXN and reverses multiple PH
subtypes. We found that a GSTP1 inhibitor increases FXN and ISCU and improves PH. We will define this
drug’s efficacy for ameliorating Groups 1-2 PH models and if FXN and GSTP1 are crucial for its function (via
FXN and GSTP1/2 KO mice). If so, we could define an entirely new Fe-S-specific therapy for PH and FRDA.
Significance: Via unique human and rodent discovery platforms, we will investigate an EC Fe-S cluster-
senescence axis controlling multiple PH subtypes. Our work could explain the evolution of EC biology in PH
and shift molecular paradigms, particularly for FRDA and Group 2 PH. Our work will also develop new therapies
using senolytic drugs to control Fe-S biogenesis, notably applicable to Group 2 PH with no approved treatments.
背景:内皮细胞(EC)病理学驱动肺动脉高压(pH),但混乱
这种疾病中EC表型的演变持续了数十年。 EC感应,稳定细胞的状态
pH中有循环停滞,但调节特征尚不清楚。由我们先前的工作领导
铁硫(Fe-S)簇的缺乏,我们发现Fe-S生物发生蛋白Frataxin(FXN)对照
肺EC中的感应。这可能发生在弗里德里希共济失调(FRDA)中,这种疾病以遗传为标志
FXN缺乏症,心肌病和通常pH。在这里,我们在pH中提供了一种新的EC生物学模型,其中FXN
损失促进了足够低的FXN的肺EC子集中的遗传毒性应力和感应。衰老
然后,EC促进注射并驱动许多pH亚型,包括FRDA和左心脏病。
假设:我们提出了FXN缺乏症,由遗传或获得的手段驱动,协调Fe-S依赖性
遗传毒性应激,实施EC衰老和多个pH亚型。目标1。确定FXN是否缺乏
驱动DNA损伤以实施EC感应。通过研究人类肺动脉和微血管ECS
并通过FXN突变的基因组编辑诱导多能干细胞(IPSC)衍生的EC中的FXN突变。
患者,我们将研究FXN在基因组应激和EC衰老中的作用。通过研究循环因素,
组织学和单细胞RNA测序,我们将评估血浆和罕见肺标本中的EC感应
来自PAH患者,FRDA和HCM患有肺血管疾病的患者。我们希望看到剂量 -
FXN活性的依赖管弦在EC感应和pH上融合。目标2。确定EC FXN是否
缺乏取决于感应和髓样注射以驱动pH。在组1的小鼠模型中
PAH和第2组pH是由于FRDA,使用EC FXN - / - (KO)技术和腺相关病毒输送
FXN及其结合伴侣ISCU与体内肺EC的ISCU,我们将评估EC基因组应力,衰老,
炎症和pH。 EC特异性P16 KO小鼠和CX3CR1 KO小鼠将用于定义EC FXN是否依赖
感应和下游髓样注射后,以控制pH。这,我们旨在证明一种新的因果关系
pH中的EC生物学模型 - 一种涉及困扰EC异质性的混淆的模型
数十年来。目标3。确定新型的GSTP1抑制剂是否增加了FXN并逆转多个pH
亚型。我们发现GSTP1抑制剂增加了FXN和ISCU并改善pH值。我们将定义这个
药物对改善1-2个pH模型的效率以及FXN和GSTP1的功能至关重要(VIA)
FXN和GSTP1/2 KO小鼠)。如果是这样,我们可以为PH和FRDA定义全新的FE-S特异性疗法。
意义:通过独特的人类和啮齿动物发现平台,我们将研究一个EC FE-S群集 -
控制多个pH亚型的感应轴。我们的工作可以解释pH中EC生物学的演变
并移动分子范式,特别是对于FRDA和第2组pH。我们的工作还将开发新的疗法
使用鼻溶剂来控制Fe-S生物发生,特别是适用于未经批准治疗的2组pH。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Y Chan其他文献
Stephen Y Chan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Y Chan', 18)}}的其他基金
Genetic and hypoxic control of a lncRNA axis orchestrates endothelial reprogramming in pulmonary hypertension
lncRNA轴的遗传和缺氧控制协调肺动脉高压中的内皮重编程
- 批准号:
10622021 - 财政年份:2023
- 资助金额:
$ 61.99万 - 项目类别:
A platelet-fibroblast axis connecting bioenergetics and metabolism in SSc-pulmonary arterial hypertension
连接 SSc 肺动脉高压生物能学和代谢的血小板-成纤维细胞轴
- 批准号:
10404145 - 财政年份:2022
- 资助金额:
$ 61.99万 - 项目类别:
A platelet-fibroblast axis connecting bioenergetics and metabolism in SSc-pulmonary arterial hypertension
连接 SSc 肺动脉高压生物能学和代谢的血小板-成纤维细胞轴
- 批准号:
10705673 - 财政年份:2022
- 资助金额:
$ 61.99万 - 项目类别:
Molecular Drivers of Vascular Stiffness and Metabolic Dysfunction in HIV-Induced Pulmonary Arterial Hypertension
HIV 引起的肺动脉高压中血管僵硬和代谢功能障碍的分子驱动因素
- 批准号:
9366038 - 财政年份:2017
- 资助金额:
$ 61.99万 - 项目类别:
Iron-Sulfur Deficiency as a Critical Pathogenic Cause of Pulmonary Hypertension
铁硫缺乏是肺动脉高压的关键致病原因
- 批准号:
9252504 - 财政年份:2015
- 资助金额:
$ 61.99万 - 项目类别:
Frataxin deficiency as a cause of endothelial senescence in multiple subtypes of pulmonary hypertension
Frataxin 缺乏是多种肺动脉高压亚型内皮衰老的原因
- 批准号:
10653917 - 财政年份:2015
- 资助金额:
$ 61.99万 - 项目类别:
Defining the complex biology of the miR-130/301 family in pulmonary hypertension
定义 miR-130/301 家族在肺动脉高压中的复杂生物学
- 批准号:
8752928 - 财政年份:2014
- 资助金额:
$ 61.99万 - 项目类别:
Defining the complex biology of the miR-130/301 family in pulmonary hypertension
定义 miR-130/301 家族在肺动脉高压中的复杂生物学
- 批准号:
8914034 - 财政年份:2014
- 资助金额:
$ 61.99万 - 项目类别:
An endothelial-fibroblast axis connecting senescence to amino acid metabolism for control of vascular stiffness in PAH
连接衰老与氨基酸代谢以控制 PAH 血管僵硬度的内皮-成纤维细胞轴
- 批准号:
10378309 - 财政年份:2014
- 资助金额:
$ 61.99万 - 项目类别:
Defining the Complex Biology of the miR-130/301 Family in Pulmonary Hypertension
定义 miR-130/301 家族在肺动脉高压中的复杂生物学
- 批准号:
9069041 - 财政年份:2014
- 资助金额:
$ 61.99万 - 项目类别:
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有条件自动驾驶汽车驾驶人疲劳演化机理与协同调控方法
- 批准号:52372341
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:52272413
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Childhood-onset hypomyelinating leukodystrophy and the multi-tRNA synthetase complex
儿童期发病的低髓鞘性脑白质营养不良和多 tRNA 合成酶复合物
- 批准号:
10582441 - 财政年份:2022
- 资助金额:
$ 61.99万 - 项目类别:
Elucidating the RNA-mediated mechanisms governing H3K9me3 deposition in fragile X syndrome
阐明脆性 X 综合征中 H3K9me3 沉积的 RNA 介导机制
- 批准号:
10709509 - 财政年份:2022
- 资助金额:
$ 61.99万 - 项目类别:
Studying the Molecular Mechanism of Foxp1/2 Function Controlling the Cerebellar Development
Foxp1/2功能控制小脑发育的分子机制研究
- 批准号:
10459286 - 财政年份:2021
- 资助金额:
$ 61.99万 - 项目类别:
Studying the Molecular Mechanism of Foxp1/2 Function Controlling the Cerebellar Development
Foxp1/2功能控制小脑发育的分子机制研究
- 批准号:
10313573 - 财政年份:2021
- 资助金额:
$ 61.99万 - 项目类别:
Studying the Molecular Mechanism of Foxp1/2 Function Controlling the Cerebellar Development
Foxp1/2功能控制小脑发育的分子机制研究
- 批准号:
10676978 - 财政年份:2021
- 资助金额:
$ 61.99万 - 项目类别: