Novel Sheet-Membrane Dialyzer for Wearable Hemodialysis
用于可穿戴血液透析的新型片膜透析器
基本信息
- 批准号:10450175
- 负责人:
- 金额:$ 30.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAlbuminsAmericanAnimal ModelAnimalsAreaArteriesArtificial KidneyBinding ProteinsBloodBlood PlateletsBlood PressureBlood VesselsBlood flowCardiovascular systemCell AdhesionCellsClinicalCoagulation ProcessComplement ActivationCresolDevicesDialysis procedureDiffusionEnd stage renal failureExcisionFemaleFiltrationFloorGenerationsHealthHealth Care CostsHeart RateHemodialysisHemolysisHomeostasisHourHumanInfusion proceduresInjectionsKidneyLife StyleLiftingMeasuresMechanicsMembraneMetabolicMetabolic Clearance RateModelingMolecularNanoporousOutcomePatientsPlasmaPreparationProteinsPublic HealthQuality of lifeRattusResearchRiskRouteSamplingSeriesSiliconSprague-Dawley RatsSystemTechniquesTechnologyTestingTimeToxinTreatment ProtocolsUltrafiltrationUreaWaterWeightWhole Bloodbasebeta-2 Microglobulincostdesigndetection assaydetection limitexperimental studyflexibilityhemocompatibilityimprovedinstrumentmalenanomembranenoveloperationportabilitypressurepreventprogramssilicon nitridetreatment durationwearable sensor technology
项目摘要
Abstract
More than 520,000 patients with End Stage Renal Disease (ESRD) underwent routine dialysis in the US in 2017.
Conventional hemodialysis (HD) uses floor-standing instruments, which contributes to the dominance of center-
based dialysis for the HD delivery space. Wearable HD systems could be employed to improve clinical outcomes
and quality of life for patients with ESRD by enabling continuous dialysis. Wearable HD also enables frequent
dialysis on a flexible treatment schedule. While there are potential benefits of more frequent dialysis, this comes
at a cost of increased burden on lifestyle, risks of access malfunction, and health care costs. Also, episodic
treatments provide insufficient time to remove large toxins (small diffusion coefficients) and protein-bound toxins.
The barrier is the size of the current membranes which are bulky and not easily integrated into a wearable system
and require large amounts of extracorporeal blood flow to achieve appropriate toxin clearances. Achieving
significant improvements will require highly efficient membranes that enable prescribed toxin removal in small
device formats.
Our group has developed a variety of ultrathin (< 100 nm) nanoporous, silicon-based membranes and have
established their value in improving the efficiency and precision of molecular separations. Because
nanomembranes are 100 to1000 times thinner than conventional hemodialysis membranes, we hypothesize
their ability to reduce the format for hemodialysis by orders of magnitude. We have recently developed a lift-off
technique to produce sheets of nanoporous nitride (NPN) membrane material separated from the supporting
silicon wafer. We propose to develop, using COMSOL Multiphysics modeling, a two-stage hemodialyzer
incorporating two NPN membrane sheets in series. The fist NPN sheet membrane (100-nm pores) will filter out
the cellular material generating plasma that will then be dialyzed by the second membrane (20-nm to 30-nm
pores). The two-filter system will be tested on the benchtop for its ability to separate uremic toxins from whole
blood and measured for hemocompatibility (hemolysis, complement activation etc.). The devices will also be
bench tested for their ability to withstand the pressures exerted by the extracorporeal blood flow and designed
ultrafiltration. The two-stage hemodialyzers will be tested in a small-animal model (male and female Sprague-
Dawley rats). We expect, based on previous clearance studies with chip-based NPN membranes, that NPN
sheet membranes can be used to construct a mechanically reliable hemodialysis device that achieves
homeostatic levels of toxins through continuous operation. By enabling effective hemodialysis is small formats,
our membrane technology will hasten the adoption of not only wearable HD therapies, but of portable and
implantable HD therapies. This effort supports the recently created “Advancing American Kidney Health initiative”
to transform how ESRD therapy is delivered.
抽象的
2017 年,美国有超过 520,000 名终末期肾病 (ESRD) 患者接受了常规透析。
传统的血液透析(HD)使用落地式仪器,这导致了中心仪器的主导地位。
基于透析的 HD 输送空间可用于改善临床结果。
通过连续透析,可提高终末期肾病 (ESRD) 患者的生活质量。
灵活的治疗计划进行透析 虽然更频繁的透析有潜在的好处,但这是不可避免的。
其代价是增加生活方式的负担、访问故障的风险以及间歇性的医疗费用。
治疗没有足够的时间来去除大毒素(小扩散系数)和蛋白质结合毒素。
障碍在于当前薄膜的尺寸,体积庞大且不易集成到可穿戴系统中
并且需要大量的体外血流来实现适当的毒素清除。
重大改进将需要高效的膜,能够在小范围内去除规定的毒素
设备格式。
我们的团队开发了多种超薄(< 100 nm)纳米多孔硅基膜,并具有
确立了其在提高分子分离效率和精度方面的价值。
纳米膜比传统血液透析膜薄 100 至 1000 倍,我们勇敢地
他们能够将血液透析的形式减少几个数量级。我们最近开发了一种提升技术。
生产与支撑体分离的纳米多孔氮化物(NPN)膜材料片的技术
我们建议使用 COMSOL Multiphysics 建模开发两级血液透析器。
将两个 NPN 膜片串联起来,第一个 NPN 膜片(100 nm 孔径)将被滤除。
细胞材料产生血浆,然后由第二层膜(20 nm 至 30 nm)透析
双过滤系统将在台式上测试其从整体中分离尿毒症毒素的能力。
血液并测量血液相容性(溶血、补体激活等)。
测试他们承受体外血流施加的压力的能力的长凳,并设计
两级血液透析器将在小动物模型(雄性和雌性斯普拉格)中进行测试。
Dawley 大鼠),根据之前基于芯片的 NPN 膜的清除研究,我们预计 NPN
片状膜可用于构建机械可靠的血液透析装置,从而实现
通过连续操作实现毒素的稳态水平,通过小形式实现有效的血液透析,
我们的膜技术不仅将加速可穿戴高清疗法的采用,而且还将加速便携式和高清疗法的采用
植入式 HD 疗法支持最近创建的“促进美国肾脏健康倡议”。
改变 ESRD 治疗的实施方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dean G Johnson其他文献
Dean G Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dean G Johnson', 18)}}的其他基金
Novel Sheet-Membrane Dialyzer for Wearable Hemodialysis
用于可穿戴血液透析的新型片膜透析器
- 批准号:
10665598 - 财政年份:2020
- 资助金额:
$ 30.5万 - 项目类别:
Novel Sheet-Membrane Dialyzer for Wearable Hemodialysis
用于可穿戴血液透析的新型片膜透析器
- 批准号:
10092447 - 财政年份:2020
- 资助金额:
$ 30.5万 - 项目类别:
Novel Sheet-Membrane Dialyzer for Wearable Hemodialysis
用于可穿戴血液透析的新型片膜透析器
- 批准号:
10264036 - 财政年份:2020
- 资助金额:
$ 30.5万 - 项目类别:
Novel Ultra-Permeable Membrane-based Dialyzer for Home Hemodialysis
用于家庭血液透析的新型超渗透膜透析器
- 批准号:
9265466 - 财政年份:2016
- 资助金额:
$ 30.5万 - 项目类别:
Novel Ultra-Permeable Membrane-based Dialyzer for Home Hemodialysis
用于家庭血液透析的新型超渗透膜透析器
- 批准号:
9109925 - 财政年份:2016
- 资助金额:
$ 30.5万 - 项目类别:
Novel Ultra-Permeable Membrane-based Dialyzer for Home Hemodialysis
用于家庭血液透析的新型超渗透膜透析器
- 批准号:
9900772 - 财政年份:2016
- 资助金额:
$ 30.5万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Novel Extracorporeal Therapy for the Reversal of Septic Shock and Restoring Hemodynamic Stability
逆转感染性休克并恢复血流动力学稳定性的新型体外疗法
- 批准号:
10374283 - 财政年份:2022
- 资助金额:
$ 30.5万 - 项目类别:
Effects of a Novel, Scalable, and Sustainable Patient Portal Intervention on Diabetes-Related Outcomes: A Pragmatic Randomized Controlled Trial
新颖、可扩展且可持续的患者门户干预对糖尿病相关结果的影响:一项务实的随机对照试验
- 批准号:
10689128 - 财政年份:2021
- 资助金额:
$ 30.5万 - 项目类别:
Novel Sheet-Membrane Dialyzer for Wearable Hemodialysis
用于可穿戴血液透析的新型片膜透析器
- 批准号:
10665598 - 财政年份:2020
- 资助金额:
$ 30.5万 - 项目类别:
Novel Sheet-Membrane Dialyzer for Wearable Hemodialysis
用于可穿戴血液透析的新型片膜透析器
- 批准号:
10092447 - 财政年份:2020
- 资助金额:
$ 30.5万 - 项目类别:
Novel Sheet-Membrane Dialyzer for Wearable Hemodialysis
用于可穿戴血液透析的新型片膜透析器
- 批准号:
10264036 - 财政年份:2020
- 资助金额:
$ 30.5万 - 项目类别: