Network Intervention Planning without Actual Network Data for Infectious Disease Control
没有实际网络数据的传染病控制网络干预规划
基本信息
- 批准号:10449891
- 负责人:
- 金额:$ 13.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-25 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAddressApplication procedureArea Under CurveBehaviorBehavioral SciencesBlood CirculationBusinessesCOVID-19COVID-19 pandemicCaliforniaCase Fatality RatesCause of DeathCessation of lifeCitiesCommunicable DiseasesCommunitiesConflict (Psychology)CountryCountyCrowdingDataDevelopmentDiagnosisDiseaseDisease OutbreaksEarly DiagnosisEarly InterventionEconomicsElderlyEmployeeEpidemicEpidemiologyEquilibriumEthnic OriginEventExhibitsFaceFailureFatigueFranceFriendsFriendshipsGoalsHomeHourHouseholdIndividualInfectionInfluenzaInterventionInvestigationJapanKnowledgeLocationMasksMathematicsMeasuresMental HealthModelingNetwork-basedNonlinear DynamicsPatternPersonsPilot ProjectsPlayPublic HealthQuarantineRNA vaccineRaceReproductionResearchRoleSamplingSchoolsSignal TransductionSocial NetworkSocial PoliciesSouth KoreaSpecific qualifier valueStructureStudentsSubgroupTechniquesTimeTuberculosisVaccinatedVaccinesVariantWorkplacebasedisorder controldynamic systemhigh riskimprovedinfection riskmathematical modelnovelnovel vaccinesoperationpandemic preparednesspathogenphysical conditioningpublic health relevanceracial and ethnicracial and ethnic disparitiessimulationsocial groupsocial normsocial structuresocioeconomicssoundsuccesstheoriestransmission processvaccine developmentvaccine distributionvaccine strategy
项目摘要
PROJECT SUMMARY (ABSTRACT)
Contact network epidemiology is a compelling epidemiologic framework that aims to model dynamic interactions
of people over their social networks in order to track infection cascades, especially for communicable diseases.
Network-based simulations in contact network epidemiology can incorporate variations in people’s attributes and
behaviors (e.g. age, race/ethnicity, wearing a facial mask), their interaction patterns (e.g. homophily or
assortativity), and social structures (e.g. social norms and policies including non-pharmaceutical interventions
[NPIs]). Although obtaining precise network data is challenging, it can guide us to identify potential working
network intervention strategies, which may prove beneficial in addressing the COVID-19 pandemic.
Using the framework of network interventions, a pilot simulation study proposed alternative NPI strategies to the
stay-at-home order, in which transmission is mitigated while people’s socioeconomic activities are sustained
(Nishi et al, 2020, PNAS). In the most effective dividing + balancing groups strategy, a social group (e.g.
employees of the same workplace and students of the same school) is divided randomly into two subgroups with
an equal number to reduce the number of physical contacts. If it is operated in a spatial manner, additional space
for the subgroups is prepared; if it is operated in a temporal manner, the two subgroups will engage in their
activities during different business hours. Therefore, the strategy would allow people to engage in the same
magnitude of economic activities. The strength of the proposed strategy is that it does not require actual network
data, which is difficult to obtain in most cases.
Following the pilot study, this research seeks to create other novel NPI strategies for infectious disease control
(the targets are both COVID-19 and other emerging diseases) (Aim 1). This research also seeks to create novel
network intervention strategies for vaccine allocation (Aim 2). The proposed strategies for mitigating an epidemic
and optimizing vaccine allocation will not, in principle, require actual network data. Therefore, their potential
effect needs to be examined using network-based simulations with realistic assumptions or using other
approaches, including mathematical modeling. The utilized social network will be based on a sample city of
10,000 individuals (Nishi et al, 2020, PNAS) and various network structures that are publicly available (the use
of secondary data). Moreover, this research will analyze the role of early warning signals (EWS), which has been
developed in non-linear dynamical systems in the infectious disease control context. I plan to use the 76
California County COVID-19 data (Aim 3).
项目概要(摘要)
接触网络流行病学是一个引人注目的流行病学框架,旨在模拟动态相互作用
人们通过社交网络追踪感染级联,特别是传染病。
接触网络流行病学中基于网络的模拟可以纳入人们属性的变化和
行为(例如年龄、种族/民族、戴口罩)、他们的互动模式(例如同质性或
相配性)和社会结构(例如社会规范和政策,包括非药物干预措施)
[NPI])虽然获得精确的网络数据具有挑战性,但它可以指导我们识别潜在的工作。
网络干预策略,这可能有助于应对 COVID-19 大流行。
利用网络干预框架,一项试点模拟研究提出了替代 NPI 策略
居家令,在人们的社会经济活动得以维持的同时,传播得到缓解
(Nishi 等人,2020,PNAS)在最有效的划分+平衡群体策略中,一个社会群体(例如,
同一工作场所的员工和同一学校的学生)被随机分为两个小组
如果以空间方式操作,则需要额外的空间。
对于小组已准备好;如果以临时方式操作,则两个小组将进行各自的工作
因此,该策略将允许人们在不同的工作时间从事相同的活动。
所提出的策略的优点在于它不需要实际的网络。
数据,在大多数情况下很难获得。
继试点研究之后,本研究旨在创建其他新颖的 NPI 策略来控制传染病
(目标是 COVID-19 和其他新出现的疾病)(目标 1)。
疫苗分配的网络干预策略(目标 2)。
原则上,优化疫苗分配不需要实际的网络数据,因此它们的潜力很大。
需要使用基于网络的模拟和现实假设或使用其他方法来检查效果
方法,包括数学建模,所使用的社交网络将基于样本城市。
10,000 个人(Nishi 等人,2020,PNAS)以及公开可用的各种网络结构(使用
此外,本研究将分析早期预警信号(EWS)的作用。
我计划使用 76 在传染病控制领域的非线性动力系统中开发。
加利福尼亚县 COVID-19 数据(目标 3)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Akihiro Nishi其他文献
Akihiro Nishi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Akihiro Nishi', 18)}}的其他基金
Network Intervention Planning without Actual Network Data for Infectious Disease Control
没有实际网络数据的传染病控制网络干预规划
- 批准号:
10580083 - 财政年份:2022
- 资助金额:
$ 13.45万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Delineating mechanisms underlying the enhanced stability and functionality of CD2-KO Tregs and chimeric antigen receptor (CAR) Tregs and their application in xenotransplantation
描述 CD2-KO Tregs 和嵌合抗原受体 (CAR) Tregs 稳定性和功能增强的机制及其在异种移植中的应用
- 批准号:
10646753 - 财政年份:2023
- 资助金额:
$ 13.45万 - 项目类别:
PRECARE is an innovative and integrated platform designed to improve the developmental surveillance of the baby.
PRECARE 是一个创新的集成平台,旨在改善婴儿的发育监测。
- 批准号:
10603833 - 财政年份:2023
- 资助金额:
$ 13.45万 - 项目类别:
Modulating the PD-1/PD-L1 checkpoint to promote antitumor activity of HER2 CAR T cells in patients with sarcoma
调节PD-1/PD-L1检查点促进肉瘤患者HER2 CAR T细胞的抗肿瘤活性
- 批准号:
10562836 - 财政年份:2023
- 资助金额:
$ 13.45万 - 项目类别:
Gene regulatory networks in early lung epithelial cell fate decisions
早期肺上皮细胞命运决定中的基因调控网络
- 批准号:
10587615 - 财政年份:2023
- 资助金额:
$ 13.45万 - 项目类别:
The genetically engineered pig heart as a bridge to allotransplantation in infants
基因工程猪心脏作为婴儿同种异体移植的桥梁
- 批准号:
10815486 - 财政年份:2023
- 资助金额:
$ 13.45万 - 项目类别: