Structural and functional determinants of decision-making in bacteriophage host recognition
噬菌体宿主识别决策的结构和功能决定因素
基本信息
- 批准号:10451607
- 负责人:
- 金额:$ 39.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-10 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Antibiotic TherapyBacteriaBacteriophagesBindingBinding ProteinsBiological ModelsC-terminalCapsidCell Surface ReceptorsCell physiologyCell surfaceCellsComputersCryo-electron tomographyCryoelectron MicroscopyCytoplasmDNADataDecision MakingDengueDetectionDiagnosticEnergy-Generating ResourcesEscherichia coliEventFiberFluorescenceFoundationsGoalsHealthHumanInfectionKineticsKnock-outKnowledgeLipopolysaccharidesMeasuresMedicalMembraneMembrane ProteinsModelingMolecular ConformationMotionN-terminalNatureO AntigensOrganellesPathway interactionsPhasePlayPolysaccharidesProcessProtein ConformationProteinsProtocols documentationRegulationResistanceResolutionRoleRotationShigella dysenteriaeSideSignal TransductionStructureSurfaceSystemTailTherapeuticVWA7 geneVertebral columnVirionVirusVirus ActivationWest Nile virusWorkX-Ray CrystallographyZIKAantibiotic resistant infectionsantimicrobialcontrast imagingfluorescence imaginghuman pathogenimprovedinstrumentmass spectrometric imagingmicrocalorimetrymutantparticlepublic health relevancerational designreceptorreceptor bindingsmall moleculesugartool
项目摘要
Abstract
Bacterial viruses (bacteriophages) recognize their host cells with the help of specialized Receptor-Binding
Proteins (RBPs) that emanate from the ‘tail’, a host attachment organelle of the phage. RBPs are either long and
slender fibers devoid of enzymatic activity or shorter and stockier tailspikes that can digest or modify
polysaccharide molecules that extend from or cover the surface of a bacterial cell. Upon host attachment, the
tail creates a conduit between the phage capsid and the host cell cytoplasm allowing phage DNA and proteins
to be delivered into the cell. Several aspects of this process, especially those that concern the transition from
the initial recognition event to irreversible attachment, remain poorly understood. As components of the phage
particle, tailspike RBPs are required for both the initial recognition and irreversible attachment. However, isolated
tailspike RBPs destroy the cell surface receptor and make the cell resistant to the phage carrying those RBPs.
Furthermore, tail fiber RBPs bind to the host cell weakly, but this binding triggers a conformational change in the
particle committing it to irreversible attachment. Our goal is to describe this transition and the associated
structural transformation of the virus particle for bacteriophage G7C, a virus that infects Escherichia coli and
Shigella dysenteriae. G7C has a short tail, 24 tailspike RBPs of two different types, and contains several large
proteins inside the capsid. In Aim 1, we will examine the role of different domains of the two tailspike RBPs in
host cell recognition and attachment. We will measure the energy of binding of G7C RBPs to their O-antigen
substrates. We will also establish the number of RBPs per particle required for infection. We will develop a
protocol for fluorescence/phase contrast imaging and computer processing of attachment of the phage to the
host cell in a single cell and ensemble modes. In Aim 2, we will examine the structural transformation of the
phage particle upon irreversible attachment with the help of cryo-electron microscopy, cryo-electron tomography,
and X-ray crystallography. In Aim 3, we will identify the outer membrane receptor for G7C that causes opening
of the tail channel and DNA release and examine the structure of G7C bound to that receptor. In summary, the
overarching goal of this proposal is to quantitively describe how bacteriophages commit themselves to
irreversible attachment, what kind of factors are involved, what is the source of energy that activates the particle
for irreversible attachment. The results of the proposed work will lay a foundation for quantitative description of
attachment in other phages and, possibly, in other viruses.
抽象的
细菌病毒(噬菌体)借助专门的受体结合识别其宿主细胞
蛋白质(RBP)从噬菌体的宿主附着细胞器“尾巴”中散发出来。 rbps要么很长,
没有酶活性的细长纤维或可以消化或修改的较短且较短的尾巴
从或覆盖细菌细胞表面延伸或覆盖的多糖分子。在主机附件上,
尾巴在噬菌体衣壳和宿主细胞细胞质之间形成导管,允许噬菌体DNA和蛋白质
将其输送到单元格中。这个过程的几个方面,尤其是那些关注从
不可逆依恋的最初识别事件仍然了解不足。作为噬菌体的组成部分
初始识别和不可逆的附件都需要粒子,尾尖端RBP。但是,孤立
Tailspike RBP破坏了细胞表面受体,并使携带这些RBP的噬菌体具有抗性。
此外,尾纤维RBP与宿主细胞结合弱,但这种结合触发了构象变化
粒子将其归于不可逆的附件。我们的目标是描述这种过渡和相关的
细菌g7c病毒颗粒的结构转化,一种感染大肠杆菌和大肠杆菌的病毒
Shigella dysenteriae。 G7C有两种不同类型的短尾巴,24个尾巴rbps,并包含几个大型
衣壳内的蛋白质。在AIM 1中,我们将研究两个尾式rbps的不同域中的作用
宿主细胞识别和依恋。我们将测量G7C RBP与O-抗原结合的能量
基材。我们还将建立每个感染所需的RBP的数量。我们将发展一个
荧光/相对比成像和计算机处理的协议
单个单元格和集合模式中的主机单元。在AIM 2中,我们将研究
噬菌体粒子在不可逆的附着时,借助冷冻电子显微镜,冷冻电子断层扫描,
和X射线晶体学。在AIM 3中,我们将确定导致打开的G7C的外膜受体
尾通道和DNA的释放,并检查与该受体结合的G7C的结构。总而言之,
该提案的总体目标是定量描述噬菌体如何致力于
不可逆转的附件,涉及哪种因素,激活粒子的能源是什么
用于不可逆的依恋。拟议工作的结果将为定量描述奠定基础
在其他噬菌体中附着,并可能在其他病毒中附着。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Petr G Leiman其他文献
In vitro-Assembled Wedges of Phage T4 Form a Star-shaped Baseplate
体外组装的噬菌体 T4 楔形物形成星形底板
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Moh Lan Yap;Yasunori Monzaki;Kazuhiro Mio;Petr G Leiman;Shuji Kanamaru;Fumio Arisaka - 通讯作者:
Fumio Arisaka
量子ドットの蛍光揺らぎを利用した超解像法の開発
利用量子点荧光涨落的超分辨率方法的开发
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Moh Lan Yap;Yasunori Monzaki;Kazuhiro Mio;Petr G Leiman;Shuji Kanamaru;and Fumio Arisaka;油井孔兵・寺内允・金丸周司・有坂文雄;油井孔兵・寺内允・金丸周司・有坂文雄;油井孔兵・寺内允・金丸周司・有坂文雄;渡邉朋信 - 通讯作者:
渡邉朋信
Petr G Leiman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Petr G Leiman', 18)}}的其他基金
Structural and functional determinants of decision-making in bacteriophage host recognition
噬菌体宿主识别决策的结构和功能决定因素
- 批准号:
10037339 - 财政年份:2020
- 资助金额:
$ 39.5万 - 项目类别:
Structural and functional determinants of decision-making in bacteriophage host recognition
噬菌体宿主识别决策的结构和功能决定因素
- 批准号:
10650340 - 财政年份:2020
- 资助金额:
$ 39.5万 - 项目类别:
Structural and functional determinants of decision-making in bacteriophage host recognition
噬菌体宿主识别决策的结构和功能决定因素
- 批准号:
10798641 - 财政年份:2020
- 资助金额:
$ 39.5万 - 项目类别:
Structural and functional determinants of decision-making in bacteriophage host recognition
噬菌体宿主识别决策的结构和功能决定因素
- 批准号:
10260419 - 财政年份:2020
- 资助金额:
$ 39.5万 - 项目类别:
相似国自然基金
基于共价有机框架的噬菌体-光催化协同靶向抗菌策略用于顽固性细菌感染的研究
- 批准号:22378279
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
噬菌体和非宿主细菌互作机制:以珊瑚中噬菌体和共附生细菌互作为例
- 批准号:42376128
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
海洋噬菌体通过铁载体转运途径感染蓝细菌影响铁迁移的机制
- 批准号:42306113
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
珠江河口微型真核生物与噬菌体对浮游细菌群落下行控制的相对重要性研究
- 批准号:42376086
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
新型细菌抗噬菌体防御系统DSR2的分子机制研究
- 批准号:32371329
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Metagenomic discovery and optimization of novel endolysins targeting Cutibacterium acnes to treat acne vulgaris
针对痤疮皮肤杆菌治疗寻常痤疮的新型内溶素的宏基因组发现和优化
- 批准号:
10821291 - 财政年份:2023
- 资助金额:
$ 39.5万 - 项目类别:
Investigating phage therapy for the treatment of urinary tract infections
研究噬菌体疗法治疗尿路感染
- 批准号:
10677257 - 财政年份:2023
- 资助金额:
$ 39.5万 - 项目类别:
Optimization, Manufacturing and Testing of a Lead Therapeutic Bacteriophage Cocktail for the Treatment of Antibiotic-Resistant Klebsiella pneumoniae Infections
用于治疗耐抗生素肺炎克雷伯菌感染的先导治疗噬菌体混合物的优化、制造和测试
- 批准号:
10674294 - 财政年份:2023
- 资助金额:
$ 39.5万 - 项目类别:
Treatment of Multidrug-Resistant Staphylococcus aureus Orthopaedic-Device Related Biofilm Infections with Local Delivery of Lytic Bacteriophage
通过局部递送裂解性噬菌体治疗多重耐药金黄色葡萄球菌骨科器械相关生物膜感染
- 批准号:
10649057 - 财政年份:2023
- 资助金额:
$ 39.5万 - 项目类别:
Circulating Bacteriophages for the Diagnosis of Sepsis
用于诊断脓毒症的循环噬菌体
- 批准号:
10673035 - 财政年份:2022
- 资助金额:
$ 39.5万 - 项目类别: