Analytics & Machine-learning for Maternal-health Interventions (AMMI): A Cross-CTSA Collaboration
分析
基本信息
- 批准号:10447984
- 负责人:
- 金额:$ 112.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-22 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAfrican AmericanArchitectureAwarenessBiologicalCaringClinicalCollaborationsCommunicationCommunitiesComplexComprehensive Health CareComputer softwareCustomDataData AnalyticsData MartDevelopmentEducationElementsEvaluationGoalsHealth TechnologyHealthcareHealthcare SystemsHeart DiseasesHemorrhageHousingHumanHuman ResourcesHypertensionIncomeIndividualInformaticsInformation SystemsInfrastructureInstitutionInterventionIntervention StudiesLinkMachine LearningMaternal HealthMaternal MortalityMaternal-fetal medicineMeasurementNeeds AssessmentNorth CarolinaOutcomePatient riskPatientsPhasePilot ProjectsPlayPractical Robust Implementation and Sustainability ModelProviderPublic Health InformaticsResearchResearch PersonnelResource-limited settingRiskRisk FactorsRoleSiteSocioeconomic StatusStructureSystemSystems DevelopmentTechnologyTestingTranslatingTransportationTrustWomananalytical methodbaseclinical decision supportclinical riskdesigndigital healthexperiencefallsforesthealth applicationhealth datahealth disparityhealth disparity populationshigh riskimprovedinformatics toolinnovationinterestmachine learning algorithmmachine learning methodmaternal morbiditymaternal riskmortalitymortality risknutritionpatient portalpopulation healthracial disparityrisk predictionrisk stratificationsevere maternal morbidityshared decision makingsocial health determinantssystem architecturetransportation access
项目摘要
PROJECT SUMMARY
African-American women across the US experience alarmingly higher rates of maternal mortality than
their white counterparts. Factors associated with social determinants of health (SDoH), including
education, housing, transportation, and nutrition are recognized as potentially contributiing to this
disparity in maternal health outcomes, along with clinical risk factors including hypertension and heart
disease. However, the complex associations among these factors, along with the causal role they play in
increased risk for maternal mortality, are not well understood, nor are there comprehensive health care
interventions that take these combined factors into account to provide decision and communication
support for patients, providers, and community support workers. The Analytics and Machine-learning
for Maternal-health Interventions (AMMI) initiative, a collaborative effort from researchers at UNC-
Chapel Hill, Duke, and Wake Forest, aims to address these gaps by developing a machine learning-
enhanced health technology framework to reduce downstream risk of maternal mortality in African-
American women. By integrating data across the three institutions that includes both clinical and SDoH
factors, and by building machine learning applications grounded in this data, AMMI’s goals are to: 1)
clarify and track contributions of biological, clinical, and SDoH factors toward specific maternal
morbidities associated with eventual mortality, 2) conduct efficient and accurate risk predictions to
determine whether patients fall into defined target risk groups, and 3) translate these risk predictions
into interventions appropriate for providers, patients, and community support organizations. A key
focus of the initiative is to create an advanced technology infrastructure supporting connectivity and
communication among these three types of stakeholders, with the goal of building trust and awareness
based on automatically curated decision support aids and ultimately mitigating patient risk. To this end,
Aim 1, focused on establishing system requirements, begins with the formation of a stakeholder group
that brings together patient, provider, and community support organization representatives to engage
in design and evaluation with AMMI researchers throughout the project. Aim 2 focuses on systems
development, including the creation of 1) a custom-built clinical and SDoH data mart, 2) clinical decision
support software using machine learning algorithms, and 3) three user-facing apps aimed at providers,
patients and community support personnel, and AMMI researchers. Aim 3 focuses on pilot-level
deployment of the system, integrating the AMMI apps through Epic to provide informational
interventions to providers, patients, and community support personnel. Aim 4 engages stakeholders in
formative and summative evaluation during and after the deployment phase (Aim 3), including both
testing of the software function and measurement of the impact of AMMI interventions on end users.
项目概要
美国各地的非裔美国妇女的孕产妇死亡率比
他们的白人盟友与健康社会决定因素(SDoH)相关的因素,包括
教育、住房、交通和营养被认为可能对此做出贡献
孕产妇健康结果的差异,以及包括高血压和心脏病在内的临床危险因素
然而,这些因素之间的复杂关联以及它们在疾病中所起的因果作用。
孕产妇死亡风险增加,尚未得到充分了解,也没有全面的医疗保健
考虑这些综合因素以提供决策和沟通的干预措施
为患者、提供者和社区支持人员提供支持。
孕产妇保健干预 (AMMI) 倡议,这是北卡罗来纳大学研究人员的共同努力
教堂山、杜克大学和维克森林大学旨在通过开发机器学习来解决这些差距
加强卫生技术框架,以降低非洲孕产妇死亡的下游风险
美国女性通过整合三个机构(包括临床和 SDoH)的数据。
因素,并通过构建基于这些数据的机器学习应用程序,AMMI 的目标是:1)
澄清并跟踪生物学、临床和 SDoH 因素对特定母亲的贡献
与最终死亡相关的发病率,2)进行有效且准确的风险预测
确定患者是否属于定义的目标风险组,并且 3) 转化这些风险预测
适合提供者、患者和社区支持组织的干预措施。
该倡议的重点是创建一个先进的技术基础设施,支持互联互通和
这三类利益相关者之间的沟通,目的是建立信任和意识
基于自动策划的决策支持辅助并最终降低患者风险为此,
目标 1,重点是建立系统要求,从组建利益相关者群体开始
汇集患者、提供者和社区支持组织代表参与
在整个项目中,与 AMMI 研究人员一起进行设计和评估,目标 2 重点关注系统。
开发,包括创建 1) 定制的临床和 SDoH 数据集市,2) 临床决策
使用机器学习算法的支持软件,以及 3) 三个针对提供商的面向用户的应用程序,
患者和社区支持人员,以及 AMMI 研究人员,目标 3 侧重于试点级别。
系统部署,通过 Epic 集成 AMMI 应用程序以提供信息
目标 4 让利益相关者参与
部署阶段期间和之后的形成性和总结性评估(目标 3),包括
测试软件功能并衡量 AMMI 干预对最终用户的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Javed Mostafa其他文献
Javed Mostafa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Javed Mostafa', 18)}}的其他基金
An Interdisciplinary Program for Advanced Training in Health Data Analytics
健康数据分析高级培训的跨学科计划
- 批准号:
10213139 - 财政年份:2017
- 资助金额:
$ 112.04万 - 项目类别:
An Interdisciplinary Program for Advanced Training in Health Data Analytics
健康数据分析高级培训的跨学科计划
- 批准号:
9264199 - 财政年份:2017
- 资助金额:
$ 112.04万 - 项目类别:
An Interdisciplinary Program for Advanced Training in Health Data Analytics
健康数据分析高级培训的跨学科计划
- 批准号:
9552958 - 财政年份:2017
- 资助金额:
$ 112.04万 - 项目类别:
Web Triage as a Critical Patient Portal Function: RCT for Safety and Cost-Savings
Web 分诊作为关键患者门户功能:用于安全和节省成本的 RCT
- 批准号:
8124243 - 财政年份:2011
- 资助金额:
$ 112.04万 - 项目类别:
相似海外基金
Assembly and re-alignment of HLA genomic region and its implication for fine-mapping suicidality in African descent population
HLA基因组区域的组装和重新排列及其对非洲人后裔自杀倾向精细定位的意义
- 批准号:
10797122 - 财政年份:2023
- 资助金额:
$ 112.04万 - 项目类别:
Administrative Supplement: Improving Inference of Genetic Architecture and Selection with African Genomes
行政补充:利用非洲基因组改进遗传结构的推断和选择
- 批准号:
10891050 - 财政年份:2023
- 资助金额:
$ 112.04万 - 项目类别:
Early Cognitive Impairment as a function of Alzheimer's Disease and Trauma
阿尔茨海默病和创伤导致的早期认知障碍
- 批准号:
10479319 - 财政年份:2023
- 资助金额:
$ 112.04万 - 项目类别:
Genetic and neuroanatomical basis of neuropsychiatric symptoms in Alzheimer's disease in populations of diverse ancestry
不同血统人群中阿尔茨海默病神经精神症状的遗传和神经解剖学基础
- 批准号:
10567606 - 财政年份:2023
- 资助金额:
$ 112.04万 - 项目类别:
Improving cross ancestry polygenic prediction of tobacco and alcohol use
改进烟草和酒精使用的跨血统多基因预测
- 批准号:
10739557 - 财政年份:2023
- 资助金额:
$ 112.04万 - 项目类别: