Spatial and temporal tumor-immune co-evolution and interactions that model lung adenocarcinoma development
模拟肺腺癌发展的时空肿瘤免疫协同进化和相互作用
基本信息
- 批准号:10447468
- 负责人:
- 金额:$ 45.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAtlasesB cell clonalityB-Cell Antigen ReceptorB-LymphocytesCell CommunicationCell modelCellsCessation of lifeClinicalCommunitiesComplexCopy Number PolymorphismDataDevelopmentDiagnosisDiseaseDisease OutcomeDistantEarly DiagnosisEarly treatmentEcosystemEpithelialEventEvolutionExhibitsFoundationsHeterogeneityHumanImmuneImmunologic ReceptorsImmunotherapyIndividualInflammatoryInterceptKnowledgeLesionLungLung AdenocarcinomaMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of lungMapsModelingMolecularMusMutationMutation AnalysisNormal CellNormal tissue morphologyPathogenesisPathologicPathologic ProcessesPatientsPerformancePhenotypePhysiological ProcessesPopulationPrevention strategyProbabilityPrognosisPropertyRNAReceptor CellRecurrenceRoleSiteSmokingSomatic MutationStructure of parenchyma of lungTechnologyTestingTimeTrainingTumor-infiltrating immune cellsWorkcohortdata portalimmunological interventionimprovedin vivolung developmentlung lesionmachine learning modelmathematical modelmouse modelpatient subsetspremalignantprogenitorprogramssingle cell sequencingsingle cell technologyspatiotemporaltranscriptome sequencingtranscriptomicstreatment strategytumortumor heterogeneitytumor-immune system interactions
项目摘要
PROJECT SUMMARY
Lung adenocarcinoma (LUAD) is the most frequent subtype of lung cancer and accounts for most cancer
deaths. Improved early detection has increased the number of LUADs diagnosed at earlier pathological stages,
thus warranting strategies to treat this growing patient subpopulation. Thwarting these advances is a very poor
understanding of early events that drive LUAD development and that thus would guide ideal approaches for
interception. While normal lung epithelia of LUAD patients were shown to display tumor-pertinent molecular
and inflammatory changes, it is not clear why a LUAD develops within a particular region in the lung. Whereas
the lung is ecologically rich with many cell populations that partake in both physiological and pathological
processes, we still do not know how the properties and roles of individual cell populations, such as epithelial
and immune subsets, co-evolve and interact to instigate LUAD development from a specific niche in the lung.
In our preliminary efforts, we found by multi-region single-cell sequencing remarkable evolution of the
properties and transcriptomic features of multiple cell subsets and states (e.g., protumor immunosuppressive
phenotypes) across macro-space, such that cellular ecosystems and immune cell receptor repertoires were
more similar among LUADs and adjacent normal regions than with more distant normal sites. Also, such
spatial properties were progressively enriched along the pathologic continuum of matched human normal lung,
to preneoplasias, up to invasive LUADs. Our preliminary findings motivate the hypothesis that geospatially
and temporally evolving expression programs, properties, and interplay of epithelial and immune cells
model early development of LUAD from the normal and premalignant lung. In Aim 1, we will study LUADs
and matched multi-region normal tissues with defined spatial proximities from the tumors by single-cell RNA
and immune receptor sequencing in conjunction with analysis of mutations in the tumors to establish single-cell
maps of LUAD and immune co-evolution in space. Spatially modulated cell properties and states will then be
used to feed and train a machine learning model that portrays LUAD development from the lung ecosystem. In
Aim 2, we will single-cell decode tumor-immune co-evolution along the pathologic continuum of normal and
premalignant lung to LUAD as well as identify cell states and properties that are modulated by early immune
intervention. We will use temporal information in mice, along with human matched normal lung tissues,
preneoplastic lesions, and invasive LUADs, to iteratively validate and fine-tune the performance of our machine
learning model to portray LUAD development in time from the normal and premalignant lung. At the end of our
studies, we will have built new models that reliably portray LUAD evolution in space and time. By providing an
atlas of LUAD development in an accessible data portal, we also expect that our study will offer scalable
roadmaps for the scientific community to develop new strategies for treatment of this fatal disease.
项目概要
肺腺癌 (LUAD) 是肺癌最常见的亚型,占癌症的大多数
死亡人数。早期检测的改进增加了早期病理阶段诊断出的 LUAD 数量,
因此需要制定治疗这一不断增长的患者亚群的策略。阻碍这些进步是非常糟糕的
了解推动 LUAD 发展的早期事件,从而指导理想的方法
拦截。而 LUAD 患者的正常肺上皮显示出肿瘤相关分子
和炎症变化,目前尚不清楚为什么 LUAD 会在肺部的特定区域内发生。然而
肺生态丰富,有许多参与生理和病理的细胞群
过程中,我们仍然不知道单个细胞群(例如上皮细胞)的特性和作用如何
和免疫亚群共同进化并相互作用,以促进肺部特定生态位的 LUAD 发展。
在我们的初步努力中,我们通过多区域单细胞测序发现了
多个细胞亚群和状态的特性和转录组特征(例如,促肿瘤免疫抑制
表型)跨越宏观空间,使得细胞生态系统和免疫细胞受体库
LUAD 和邻近正常区域之间的相似性比更远的正常区域之间的相似性更高。还有,这样的
空间特性沿着匹配的人类正常肺的病理连续体逐渐丰富,
到肿瘤前期,直至侵袭性 LUAD。我们的初步发现激发了这样的假设:地理空间
以及随时间变化的表达程序、特性以及上皮细胞和免疫细胞的相互作用
建立正常肺和癌前肺早期发展为 LUAD 的模型。在目标 1 中,我们将研究 LUAD
并通过单细胞 RNA 将多区域正常组织与肿瘤确定的空间邻近度相匹配
免疫受体测序结合肿瘤突变分析以建立单细胞
空间中的 LUAD 和免疫协同进化图。空间调制的细胞属性和状态将被
用于喂养和训练机器学习模型,该模型描绘了肺部生态系统的 LUAD 发展。在
目标 2,我们将沿着正常和免疫的病理连续体单细胞解码肿瘤-免疫协同进化。
肺癌前的 LUAD 以及识别受早期免疫调节的细胞状态和特性
干涉。我们将使用小鼠的时间信息以及人类匹配的正常肺组织,
肿瘤前病变和侵入性 LUAD,以迭代验证和微调我们机器的性能
学习模型能够及时描绘正常肺和癌前肺的 LUAD 发展情况。在我们的最后
研究中,我们将建立新的模型来可靠地描述 LUAD 在空间和时间上的演化。通过提供
通过可访问的数据门户中的 LUAD 开发图集,我们还期望我们的研究将提供可扩展的
科学界制定治疗这种致命疾病的新策略的路线图。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Humam Kadara其他文献
Humam Kadara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Humam Kadara', 18)}}的其他基金
Spatial and temporal tumor-immune co-evolution and interactions that model lung adenocarcinoma development
模拟肺腺癌发展的时空肿瘤免疫协同进化和相互作用
- 批准号:
10651836 - 财政年份:2022
- 资助金额:
$ 45.29万 - 项目类别:
Interplay between host microbiome and immunomodulatory responses in the pathogenesis of Kras mutant lung cancer
Kras 突变肺癌发病机制中宿主微生物组与免疫调节反应之间的相互作用
- 批准号:
10555291 - 财政年份:2021
- 资助金额:
$ 45.29万 - 项目类别:
Interplay between host microbiome and immunomodulatory responses in the pathogenesis of Kras mutant lung cancer
Kras 突变肺癌发病机制中宿主微生物组与免疫调节反应之间的相互作用
- 批准号:
10186622 - 财政年份:2021
- 资助金额:
$ 45.29万 - 项目类别:
Interplay between host microbiome and immunomodulatory responses in the pathogenesis of Kras mutant lung cancer
Kras 突变肺癌发病机制中宿主微生物组与免疫调节反应之间的相互作用
- 批准号:
10356940 - 财政年份:2021
- 资助金额:
$ 45.29万 - 项目类别:
(PQ1) Progression of the airway field of injury to Kras mutant lung cancer
(PQ1) Kras 突变肺癌气道损伤的进展
- 批准号:
9171783 - 财政年份:2016
- 资助金额:
$ 45.29万 - 项目类别:
(PQ1) Progression of the airway field of injury to Kras mutant lung cancer
(PQ1) Kras 突变肺癌气道损伤的进展
- 批准号:
9355580 - 财政年份:2016
- 资助金额:
$ 45.29万 - 项目类别:
相似国自然基金
城市区域专题地图集多元耦合信息设计模式
- 批准号:41871374
- 批准年份:2018
- 资助金额:58.0 万元
- 项目类别:面上项目
集胞藻膜蛋白地图集的构建
- 批准号:31670234
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
中国古代城市地图的收集、整理、研究和编纂
- 批准号:49771008
- 批准年份:1997
- 资助金额:13.0 万元
- 项目类别:面上项目
应用系统科学进行地图集设计系统工程化、标准化研究
- 批准号:49271061
- 批准年份:1992
- 资助金额:7.0 万元
- 项目类别:面上项目
<<中国古代地图集>>(清代)
- 批准号:49171004
- 批准年份:1991
- 资助金额:5.0 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 45.29万 - 项目类别:
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
- 批准号:
10465010 - 财政年份:2023
- 资助金额:
$ 45.29万 - 项目类别:
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 45.29万 - 项目类别:
Mechanisms of New-Onset Autoimmunity/Longitudinal Immune Systems Analysis (MONA-LISA)
新发自身免疫/纵向免疫系统分析(MONA-LISA)的机制
- 批准号:
10655219 - 财政年份:2023
- 资助金额:
$ 45.29万 - 项目类别: