Toward a Chemo-Enzymatic Synthesis of Vancomycin and Its Analogs
万古霉素及其类似物的化学酶法合成
基本信息
- 批准号:10439760
- 负责人:
- 金额:$ 31.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAmino AcidsAnabolismAntibiotic ResistanceAntibioticsBiochemical ReactionBiogenesisBiologicalCarbonChemicalsChemistryClinicalClostridium difficileComplexCytochrome P450Cytochrome aCytochromesDataEngineeringEnzymesEthersFamilyGenerationsGlycopeptide AntibioticsGlycopeptidesGoalsHemeIn VitroInfectionKnowledgeLibrariesLigationLightMethodologyMethodsModificationNatural ProductsNatureOxidesPeptide SynthesisPeptidesPeroxidasesPharmaceutical PreparationsPhasePhenolsPlant ResinsProductionPropertyReactionReportingResearchResistanceResortRoleRouteSchemeScientistSeriesSolidSolventsStructureSuperbugSurfaceTherapeutic AgentsTimeVancomycinVariantanalogbasecatalystcofactorcrosslinkexperimental studyfascinateglobal healthglycosylationimprovedinnovationmembermetalloenzymemethicillin resistant Staphylococcus aureusnovelpathogenpathogenic bacteriaresistance mechanismstemweapons
项目摘要
ABSTRACT
Glycopeptide antibiotics (GPAs) are among the most important therapeutic agents world-wide. The
founding member of this natural product family, vancomycin, is used a drug of last resort against infections by
methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium difficile. Along with a handful of other
antibiotics, vancomycin provides an important weapon against “superbugs”, pathogenic bacteria that have
acquired resistance to multiple clinical antibiotics. But as resistance to even this last line of defense spreads, it
is ever more important to develop means of chemically tailoring vancomycin and other GPAs to create new
derivatives that counter known resistance mechanisms.
Synthetic derivatization has proven to be a successful method for creating new antibiotics, but this
approach is severely restricted within the GPAs, primarily due to their chemical complexity and size. Key to the
structural complexity and biological activity of vancomycin are three aromatic crosslinks, consisting of two aryl
ether connections and a biaryl carbon-carbon bond. Research over the past 20 years has shown that a
cytochrome P450 enzyme (OxyB) installs the first aryl ether bond. The origin of the remaining two crosslinks,
however, remained elusive. We recently showed that OxyA, a second P450 enzyme, introduces the second
aryl ether crosslink during vancomycin biogenesis. We further recapitulated the enzymatic activity of OxyC and
showed that it installs the final biaryl connection, the first demonstration of this reaction in any GPA. Moreover,
we have exploited the reactivities of the native biosynthetic metalloenzymes to implement a chemo-enzymatic
route for creating a vancomycin aglycone derivative. The stage is set to fully leverage this chemo-enzymatic
approach to chemically derivatize vancomycin in the hopes of generating useful second-generation derivatives.
In the current application, we propose to complete the chemo-enzymatic synthesis of not just vancomycin,
but also of derivatives known to retain bioactivity, even against resistant pathogens. We further propose to
build a library of vancomycin analogs that we refer to as “designer vancomycins”, containing modifications that
are inaccessible with current methodologies. We will simultaneously explore the detailed chemical mechanism
of OxyB and create an innovative solid-phase approach to enhance the efficiency and scalability of our chemo-
enzymatic route. Our studies will shed light onto the biosynthesis of vancomycin and enable the most
comprehensive effort yet to create GPA variants with unique structures and possibly new bioactivities via an
elegant chemo-enzymatic route.
抽象的
糖肽抗生素(GPA)是全球最重要的治疗剂之一。这
该天然产品家族的创始成员万古霉素被用来抗衡感染的药物
耐甲氧西林金黄色葡萄球菌(MRSA)和艰难梭菌。以及少数其他
抗生素,万古霉素为“超级细菌”,致病细菌提供了重要的武器
获得了多种临床抗生素的耐药性。但是,随着对最后一条防线的抵抗,它也会传播
开发化学定制万古霉素和其他GPA的方法越重要,以创建新的
抵抗已知抗性机制的衍生物。
事实证明,合成衍生化是创建新抗生素的成功方法,但这
方法在GPA中受到严格限制,这主要是由于它们的化学复杂性和大小。关键
万古霉素的结构复杂性和生物学活性是三个芳族交联,由两个芳基组成
醚连接和双碳碳键。过去20年的研究表明
细胞色素P450酶(OxyB)安装第一个芳基醚键。其余两个交联的起源,
但是,仍然难以捉摸。我们最近表明,第二个P450酶OxyA引入了第二个酶
万古霉素生物发生过程中的芳基醚交联。我们进一步概括了Oxyc和Oxyc的酶活性
表明它安装了最终的双轴连接,这是任何GPA中此反应的第一个演示。而且,
我们探索了天然生物合成金属酶的反应性以实施化学酶
创建万古霉素aglamcone衍生物的途径。该阶段将充分利用这种化学酶
化学衍生化万古霉素的方法,希望产生有用的第二代衍生物。
在当前的应用中,我们建议完成万古霉素的化学酶合成
但也有衍生物已知可以保留生物活性,甚至抵抗抗性病原体。我们进一步建议
建立一个我们称为“设计师万古霉素”的万古霉素类似物的库,其中包含修改
与当前方法无法访问。我们将简单地探索详细的化学机制
氧气并创建创新的固相方法,以提高我们的化学效率和可伸缩性
酶促路线。我们的研究将阐明万古霉素的生物合成,并最大程度地启用
全面的努力尚未创建具有独特结构和可能的新生物活性的GPA变体
优雅的化学酶途径。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mapping and Exploiting the Promiscuity of OxyB toward the Biocatalytic Production of Vancomycin Aglycone Variants.
- DOI:10.1021/acscatal.0c01719
- 发表时间:2020-08-21
- 期刊:
- 影响因子:12.9
- 作者:Forneris CC;Nguy AKL;Seyedsayamdost MR
- 通讯作者:Seyedsayamdost MR
Biosynthesis of selenium-containing small molecules in diverse microorganisms
- DOI:10.1038/s41586-022-05174-2
- 发表时间:2022-09-07
- 期刊:
- 影响因子:64.8
- 作者:Kayrouz, Chase M.;Huang, Jonathan;Seyedsayamdost, Mohammad R.
- 通讯作者:Seyedsayamdost, Mohammad R.
Robust Chemoenzymatic Synthesis of Keratinimicin Aglycone Analogues Facilitated by the Structure and Selectivity of OxyB.
- DOI:10.1021/acschembio.3c00192
- 发表时间:2023-07-21
- 期刊:
- 影响因子:4
- 作者:Hauser N;Ireland KA;Chioti VT;Forneris CC;Davis KM;Seyedsayamdost MR
- 通讯作者:Seyedsayamdost MR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammad R Seyedsayamdost其他文献
Mohammad R Seyedsayamdost的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohammad R Seyedsayamdost', 18)}}的其他基金
Exploring a New Dimension of Microbial Secondary Metabolism
探索微生物次生代谢的新维度
- 批准号:
10298182 - 财政年份:2021
- 资助金额:
$ 31.03万 - 项目类别:
Exploring a New Dimension of Microbial Secondary Metabolism
探索微生物次生代谢的新维度
- 批准号:
10623226 - 财政年份:2021
- 资助金额:
$ 31.03万 - 项目类别:
Exploring a New Dimension of Microbial Secondary Metabolism
探索微生物次生代谢的新维度
- 批准号:
10443867 - 财政年份:2021
- 资助金额:
$ 31.03万 - 项目类别:
Toward a Chemo-Enzymatic Synthesis of Vancomycin and Its Analogs
万古霉素及其类似物的化学酶法合成
- 批准号:
10170408 - 财政年份:2019
- 资助金额:
$ 31.03万 - 项目类别:
Implementing Innovative Approaches to Access the Hidden Metabolomes of Bacteria
实施创新方法来获取细菌隐藏的代谢组
- 批准号:
8955195 - 财政年份:2015
- 资助金额:
$ 31.03万 - 项目类别:
Molecular Analysis of Metabolites and Signaling Networks in Microbial Symbioses
微生物共生中代谢物和信号网络的分子分析
- 批准号:
8164434 - 财政年份:2011
- 资助金额:
$ 31.03万 - 项目类别:
Molecular Analysis of Metabolites and Signaling Networks in Microbial Symbioses
微生物共生中代谢物和信号网络的分子分析
- 批准号:
8627615 - 财政年份:2011
- 资助金额:
$ 31.03万 - 项目类别:
Molecular Analysis of Metabolites and Signaling Networks in Microbial Symbioses
微生物共生中代谢物和信号网络的分子分析
- 批准号:
8609131 - 财政年份:2011
- 资助金额:
$ 31.03万 - 项目类别:
Molecular Analysis of Metabolites and Signaling Networks in Microbial Symbioses
微生物共生中代谢物和信号网络的分子分析
- 批准号:
8306940 - 财政年份:2011
- 资助金额:
$ 31.03万 - 项目类别:
相似国自然基金
特定肠道菌种在氨基酸调控脂质代谢中的作用与机制研究
- 批准号:82300940
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群与高血压严重程度的关联及通过氨基酸代谢调控的作用机制研究
- 批准号:82304211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
磷酸酶SHP2调控成纤维细胞支链氨基酸代谢在炎症性肠病相关肠纤维化中的作用机制研究
- 批准号:82300637
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
化瘀通络法通过SATB1/JUNB介导“氨基酸代谢网-小胶质细胞极化”调控脑缺血神经功能恢复的机制研究
- 批准号:82374172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于乙酰化修饰探究支链氨基酸调控大口黑鲈肝脏脂代谢的分子机制
- 批准号:32303023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 31.03万 - 项目类别:
The regulation of cancer and aging by methionine
蛋氨酸对癌症和衰老的调节
- 批准号:
10750559 - 财政年份:2023
- 资助金额:
$ 31.03万 - 项目类别:
Designing chemoenzymatic approaches to biologically active molecules enabled by enzyme library screening
通过酶库筛选设计生物活性分子的化学酶方法
- 批准号:
10723582 - 财政年份:2023
- 资助金额:
$ 31.03万 - 项目类别:
Mechanisms promoting copper dependent cell death in cancer
促进癌症中铜依赖性细胞死亡的机制
- 批准号:
10637427 - 财政年份:2023
- 资助金额:
$ 31.03万 - 项目类别:
Preserving Physical Function in Older Adults with Cancer: Impact of an Optimizing Nutrition Intervention Applied Before and After Surgery
保留患有癌症的老年人的身体功能:手术前后应用优化营养干预的影响
- 批准号:
10643468 - 财政年份:2023
- 资助金额:
$ 31.03万 - 项目类别: