Structural basis of von Willebrand factor biology and physics
冯维勒布兰德因子生物学和物理学的结构基础
基本信息
- 批准号:10434710
- 负责人:
- 金额:$ 67.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAnabolismBindingBinding SitesBiologyBlood Coagulation DisordersBlood Coagulation FactorBlood PlateletsBlood coagulationC-terminalCalorimetryCoagulation ProcessComplement Factor DComplexCryoelectron MicroscopyCrystallizationCrystallographyCysteineDevelopmentDimerizationDiseaseDisulfidesEndothelial CellsEngineeringF8 geneFactor VIIIGlycoproteinsGoalsHalf-LifeHemophilia AHemorrhageHemostatic AgentsHemostatic functionHeritabilityIn VitroInheritedInterferometryLeadLengthLinkMediatingModelingMolecular ConformationMosaicismMucinsMutationN-terminalPatternPharmaceutical PreparationsPhysicsPlasma ProteinsPlatelet GlycoproteinsPlayPolysaccharidesPopulationProductionProprotein ConvertasesProtein EngineeringProteinsReplacement TherapyResolutionRistocetinRoleSiteStrokeStructureTestingTherapeuticThrombosisWeibel-Palade Bodiescrosslinkdesigndimerdisulfide bondexperimental studygain of function mutationglycosylationhydrodynamic flowimprovedmonomerreconstitutionstructural biologyvon Willebrand Diseasevon Willebrand Factor
项目摘要
von Willebrand factor (VWF) is a multi-domain plasma protein secreted by endothelial cells. In hemostasis,
VWF binds and crosslinks platelets to one another and the vessel wall to form the platelet plug. VWF also
binds to and stabilizes factor VIII (FVIII) in the coagulation cascade. VWF mutations cause the most common
heritable bleeding disorders called von Willebrand disease (VWD). The D1, D2, and D´D3 assemblies in VWF
are specialized domains that enable biosynthesis of VWF into ultralong concatemers that are stored as helical
tubules in Weibel-Palade bodies (WPBs). D´D3 also binds FVIII. Long length enables VWF to sense flow.
Changes in flow at sites of bleeding activate VWF by 1) elongating coiled VWF concatemers into a thread-like
conformation that exposes previously buried A1 domains and 2) activating a high-affinity state of VWF A1
domains that bind platelet glycoprotein Ibα (GPIbα) for platelet plug formation. High-resolution structures of D
assemblies and the high-affinity state of A1 are lacking. In Aim 1, we will determine the structure of the high-
affinity state of A1. Unfolding studies show that VWF A2 and A3 domains have two states, whereas A1 has
three: native, intermediate, and unfolded. Preliminary studies show that truncating the O-glycosylated linkers
N- and C-terminal destabilizes the native state of A1 and increases affinity for GPIbα. We propose that the
intermediate state corresponds to the high-affinity state of A1. We test the hypothesis that further truncation of
the linkers flanking A1, gain-of-function mutations (e.g. activating VWD mutations), and the allosteric activator
ristocetin all increase A1 affinity for GPIbα by stabilizing the intermediate state over the native state. We will
use combinations of truncations, mutations, and ristocetin to stabilize A1 in the intermediate state and to
determine the crystal structure of the putative high-affinity state of A1 and its complex with GPIbα. Aim 2 will
determine structures of D´D3 and the D´D3 dimer. Our preliminary crystal structure of the D´D3 monomer
shows how the C8, TIL, and E modules pack around the VWD module to form the D3 assembly. D´ protrudes
from the D3 assembly. The two cysteines that have been proposed to form the inter-dimer disulfide bonds are
buried. We will solve the structure of a D´D3 dimer (D´D3)2 or a D3 dimer with the protruding D´ removed to
define the structural rearrangements required for D´D3 dimerization. Proposed disulfide rearrangement that
precedes dimerization will be verified by mutation and in vitro reconstitution. As backup, we will pursue a cryo-
EM structure of VWF helical tubules to determine the structure of (D´D3)2 and how D assemblies enable
formation of highly ordered tubules. Aim 3 uses crystallography to understand how D’D3 binds FVIII, which has
the potential through protein engineering to revolutionize replacement FVIII therapy in hemophilia A. As an
alternative strategy, we will determine a cryoEM structure of a D’D3 complex with FVIII. Better structural
understanding of VWF D assemblies and the high-affinity state of A1 has important therapeutic implications for
stroke, thrombosis, VWD, and hemophilia A.
von Willebrand因子(VWF)是一种由内皮细胞分泌的多域血浆蛋白。在止血中,
VWF将血小板结合并彼此结合,并将血管壁形成血小板塞。 VWF也是如此
结合并稳定凝血级联因子VIII(FVIII)。 VWF突变导致最常见
可遗传的流血疾病称为von Willebrand疾病(VWD)。 VWF中的D1,D2和D´D3组件
是将VWF生物合成的专业域,将其存储为螺旋形的超龙串。
微花甲状动物体(WPB)中的小管。 d´d3也绑定了FVIII。长长的长度使VWF能够感知流动。
通过1)将盘绕的vwf confeTemer延长到螺纹状的位置上的流量变化。
暴露先前埋葬A1域的构象和2)激活VWF A1的高亲和力状态
结合血小板糖蛋白IBα(GPIBα)以形成血小板的结构域。 D的高分辨率结构
缺乏组装和高亲和力状态。在AIM 1中,我们将确定高位的结构
A1的亲和力状态。展开的研究表明,VWF A2和A3域具有两个状态,而A1具有
三:本地,中间和展开。初步研究表明,将O-糖基化接头截断
N-和C末端破坏了A1的本地状态,并增加了对GPIBα的亲和力。我们建议
中间状态对应于A1的高亲和力状态。我们检验了一个假设,即进一步截断
A1的链接器,功能获得突变(例如激活VWD突变)和变构激活剂
ristocetin均通过稳定本地状态的中间状态来增加对GPIBα的A1亲和力。我们将
使用截断,突变和风险赛的组合来稳定中间状态的A1
确定A1的假定高亲和力状态的晶体结构及其与GPIBα的复合物。 AIM 2意志
确定D´D3和D´D3二聚体的结构。我们的D´D3单体的初步晶体结构
显示C8,TIL和E模块如何在VWD模块周围包装以形成D3组件。 d´突出
来自D3组件。提议形成二聚体间二硫键的两个半胱氨酸是
被埋葬。我们将解决D´D3二聚体(D´D3)2或D3二聚体的结构,该二聚体的突出d´删除至
定义D´D3二聚化所需的结构重排。拟议的二硫键重排
先前的二聚化将通过突变和体外重构进行验证。作为备份,我们将追求一个冷冻
VWF螺旋管的EM结构,以确定(d´d3)2的结构以及d组件如何启用
高度有序的管的形成。 AIM 3使用晶体学来了解D'D3如何绑定FVIII
通过蛋白质工程的潜力彻底改变了血友病的替代FVIII治疗。
替代策略,我们将确定具有FVIII的D'D3复合物的冷冻结构。更好的结构
对大众组装和A1的高亲和力状态的理解具有重要的治疗意义
中风,血栓形成,VWD和血友病。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Von Willebrand factor A1 domain stability and affinity for GPIbα are differentially regulated by its O-glycosylated N- and C-linker.
- DOI:10.7554/elife.75760
- 发表时间:2022-05-09
- 期刊:
- 影响因子:7.7
- 作者:Bonazza, Klaus;Iacob, Roxana E.;Hudson, Nathan E.;Li, Jing;Lu, Chafen;Engen, John R.;Springer, Timothy A.
- 通讯作者:Springer, Timothy A.
Monomeric prefusion structure of an extremophile gamete fusogen and stepwise formation of the postfusion trimeric state.
- DOI:10.1038/s41467-022-31744-z
- 发表时间:2022-07-13
- 期刊:
- 影响因子:16.6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TIMOTHY A SPRINGER其他文献
TIMOTHY A SPRINGER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TIMOTHY A SPRINGER', 18)}}的其他基金
Structural basis of von Willebrand factor biology and physics
冯维勒布兰德因子生物学和物理学的结构基础
- 批准号:
10198035 - 财政年份:2019
- 资助金额:
$ 67.37万 - 项目类别:
Structures and Conformational Equilibria of Integrin alpha5 beta1
整合素α5β1的结构和构象平衡
- 批准号:
9079774 - 财政年份:2016
- 资助金额:
$ 67.37万 - 项目类别:
Structures and Conformational Equilibria of Integrin alpha5 beta1
整合素α5β1的结构和构象平衡
- 批准号:
9265127 - 财政年份:2016
- 资助金额:
$ 67.37万 - 项目类别:
Structural mechanisms underlying latency and activation of GDF8
GDF8 潜伏期和激活的结构机制
- 批准号:
9302311 - 财政年份:2016
- 资助金额:
$ 67.37万 - 项目类别:
Structural mechanisms underlying latency and activation of GDF8
GDF8 潜伏期和激活的结构机制
- 批准号:
9175103 - 财政年份:2016
- 资助金额:
$ 67.37万 - 项目类别:
相似国自然基金
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Structural and functional characterization of glycosyltransferases in the Campylobacter concisus N-linked glycoconjugate biosynthetic pathway
弯曲杆菌 N 连接糖复合物生物合成途径中糖基转移酶的结构和功能表征
- 批准号:
10607139 - 财政年份:2023
- 资助金额:
$ 67.37万 - 项目类别:
Multiscale Modeling of B. Anthracis Surface Layer Assembly and Depolymerization by Nanobodies
纳米抗体对炭疽杆菌表面层组装和解聚的多尺度建模
- 批准号:
10432488 - 财政年份:2022
- 资助金额:
$ 67.37万 - 项目类别:
Vitamin B12 trafficking and selectivity in gut bacteria
维生素 B12 在肠道细菌中的运输和选择性
- 批准号:
10447917 - 财政年份:2022
- 资助金额:
$ 67.37万 - 项目类别:
Novel AAV vector generation methods to prevent immunogenic unmethylated CpGs that trigger efficacy-limiting CTLs in human gene therapy
新型 AAV 载体生成方法可防止免疫原性未甲基化 CpG 触发人类基因治疗中功效限制的 CTL
- 批准号:
10620770 - 财政年份:2022
- 资助金额:
$ 67.37万 - 项目类别:
Vitamin B12 trafficking and selectivity in gut bacteria
维生素 B12 在肠道细菌中的运输和选择性
- 批准号:
10660958 - 财政年份:2022
- 资助金额:
$ 67.37万 - 项目类别: