Heme trafficking in prokaryotic cytochrome c biogenesis
原核细胞色素 C 生物发生中的血红素运输
基本信息
- 批准号:10434154
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAerobicAnaerobic BacteriaBioenergeticsBiogenesisBiologicalBiological ModelsBiological ProcessCatalysisCell physiologyDrug Metabolic DetoxicationElectron TransportEnvironmentEscherichia coliEukaryotaFoundationsFutureHemeHemeproteinsIndividualIntegral Membrane ProteinInvestigationKnowledgeLigaseMembraneMembrane ProteinsMolecularMolecular ChaperonesNatureOrganismPathway interactionsPhotosynthesisPlayPositioning AttributeProkaryotic CellsProteinsReactionRecombinantsRegulationRespirationRoleSignal TransductionSystemVisionWorkantimicrobialcytochrome ccytotoxicityheme receptorinsightnovelpathogenperiplasmprotein functiontrafficking
项目摘要
Project Summary
Cytochromes c are highly conserved heme proteins that function in electron transport chains for cellular
functions such as respiration, photosynthesis and detoxification. The ability of prokaryotes to survive and thrive
in diverse, often hostile environments is a direct result of the plasticity of their electron transport chains, of
which cytochrome c is an essential component. Much effort has been devoted to studying the roles of
individual cytochromes c, but much less is understood about their biogenesis, which requires the covalent
attachment of heme at a conserved CXXCH motif for proper folding and function. Despite their diversity, all
cytochromes c are made by one of three pathways, System I (prokaryotes), System II (prokaryotes) and
System III (eukaryotes), thus elucidation of the molecular mechanisms of these pathways is critical to our
understanding of bioenergetics and cellular survival. While the three pathways have evolved different
mechanisms to accomplish biogenesis, all must transport heme to a holocytochrome c synthetase. Heme is an
essential co-factor in all organisms, functioning not only in electron transport chains for respiration, but also for
catalysis, regulation and signaling. Yet our knowledge of heme transporters and heme trafficking is limited due
to heme’s cytotoxicity, the transient nature of trafficking and the technical challenges of studying membrane
proteins. Thus, we must also address the mechanisms of heme trafficking and here we describe our long-term
vision to elucidate the general mechanisms of heme delivery, transport and attachment, beginning with the
System I pathway. We propose to 1) identify the cytoplasmic heme receptor and mechanisms of heme
delivery, 2) determine the path of heme trafficking by System I, and 3) identify the requirements for periplasmic
heme attachment. The System I pathway consists of eight integral membrane proteins (CcmABCDEFGH) and
provides a tractable model system to study these fundamental biological questions. CcmABCD are proposed
to transport heme across the bacterial membrane and attach it to CcmE, the periplasmic heme chaperone,
which trafficks heme to the holocytochrome c synthetase, CcmFH. Utilizing a functional, recombinant E. coli
system, the System I proteins purify with endogenous heme, removing many of the technical barriers often
associated with membrane proteins. Importantly, the heme attachment reaction occurs in the periplasm, is
required for the survival of many pathogens, and likely differs in mechanisms of heme attachment from the
eukaryotic synthetase, thus the CcmFH synthetase is a potential target for novel antimicrobials. Our proposed
studies on System I will simultaneously provide insights into cytochrome c biogenesis and general
mechanisms of heme trafficking, uniquely positioning us to study two fundamental biological processes. A
natural extension of this work is to apply the general principles learned and approaches developed to the other
cytochrome c biogenesis pathways, as well as to other prokaryotic and eukaryotic heme transporters.
项目摘要
细胞色素C是高度保守的血红素蛋白,可在电子传输链中起作用用于细胞
呼吸,光合作用和排毒等功能。原核生物生存和壮成长的能力
在潜水员中,通常敌对的环境是其电子传输链的可塑性的直接结果
哪个细胞色素C是必不可少的组成部分。已经大力研究了
单个细胞色素c,但对其生物发生的理解少得多,这需要共价
血红素在组成的CXXCH基序上的附着,以进行适当的折叠和功能。尽管它们的多样性
细胞色素C由三个途径之一,系统I(原核生物),系统II(原核生物)和
系统III(真核生物),因此阐明这些途径的分子机制对我们来说至关重要
了解生物能学和细胞存活。而三个途径的发展不同
实现生物发生的机制,所有人都必须将血红素转运到全染色组C-合成酶。血红素是一个
所有生物中的必需副因素,不仅在电子传输链中进行呼吸,还可以在
催化,调节和信号传导。然而,我们对血红素转运者和血红素贩运的了解有限
对于血红素的细胞毒性,贩运的短暂性和研究膜的技术挑战
蛋白质。那就是我们还必须解决血红素贩运的机制,在这里我们描述了我们的长期
阐明血红素传递,运输和依恋的一般机制的愿景,从
系统I路径。我们提出1)确定血红素的细胞质血红素受体和机制
交付,2)确定系统i的血红素贩运路径,3)确定对周质的要求
血红素附件。系统I途径由八种整体膜蛋白(CCMABCDEFGH)和
提供了一个可拖动的模型系统来研究这些基本的生物学问题。提出了CCMABCD
为了将血红素跨过细菌膜并将其连接到CCME,Parlasmic血红素链酮,
哪些流动性血红素与全染色型C合成酶CCMFH。利用功能性重组大肠杆菌
系统,系统I蛋白质用内源性血红素纯化,通常消除许多技术障碍
与膜蛋白有关。重要的是,血红素的附着反应发生在pariplasm中,
许多病原体生存所必需的,以及可能从
真核合成酶,因此CCMFH合成酶是新型抗菌剂的潜在靶标。我们提出的
关于系统的研究,我将简单地提供有关细胞色素C生物发生和一般性的见解
血红素贩运的机制,独特地定位了我们研究两个基本生物学过程。一个
这项工作的自然扩展是将所学的一般原则和开发的方法应用于另一个
细胞色素C生物发生途径以及其他原核和真核血红素转运蛋白。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Molly Cuddy Sutherland其他文献
Molly Cuddy Sutherland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Molly Cuddy Sutherland', 18)}}的其他基金
Heme trafficking in prokaryotic cytochrome c biogenesis
原核细胞色素 C 生物发生中的血红素运输
- 批准号:
10618929 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Heme trafficking in prokaryotic cytochrome c biogenesis
原核细胞色素 C 生物发生中的血红素运输
- 批准号:
10272751 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
相似国自然基金
有氧运动通过MeCP2乳酰化激活ZFP36转录促进TREM2hi巨噬细胞抗炎功能改善动脉粥样硬化的机制研究
- 批准号:82372565
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
代谢产物丁酸介导的PKM2乳酸化修饰调控小胶质细胞极化参与有氧运动发挥脑梗死后神经保护作用的机制研究
- 批准号:82302861
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有氧康复运动抑制心外膜脂肪组织Th17细胞分化改善HFpEF所致心房颤动实验研究
- 批准号:82372581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
外泌体介导的巨噬细胞功能改变在长期有氧运动减轻AS进程中的作用及机制
- 批准号:82370446
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
Sestrin2介导有氧运动改善小鼠增龄性肠道屏障功能损伤的作用研究
- 批准号:32300961
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Targeting cytochrome bd as an anti-biofilm strategy
靶向细胞色素 bd 作为抗生物膜策略
- 批准号:
10642243 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
The role of anaerobic microbiota in cystic fibrosis airway disease trajectory
厌氧微生物群在囊性纤维化气道疾病轨迹中的作用
- 批准号:
10716654 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Mechanistic Investigation of Copper-Dependent Peptide Cyclases for Macrocycle Engineering
用于大环工程的铜依赖性肽环化酶的机理研究
- 批准号:
10464289 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Obesogenic diet-induced intestinal epithelium repair responses link dysbiosis and cardiovascular disease
肥胖饮食诱导的肠上皮修复反应将生态失调与心血管疾病联系起来
- 批准号:
10345474 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Programmable benchtop bioreactors for scalable eco-evolutionary dynamics of the human microbiome
用于人类微生物组可扩展生态进化动力学的可编程台式生物反应器
- 批准号:
10503736 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别: