Optimizing Small Molecule Read-Through Compounds for Treating AtaxiaTelangiectasia

优化小分子通读化合物治疗共济失调毛细血管扩张症

基本信息

项目摘要

PROJECT SUMMARY Ataxia-Telangiectasia (A-T) is a rare (~ 1 in every 100,000) but catastrophic and deadly disease that causes progressive loss of motor function and death between the ages of 10 and 30 years. In about one-third of A-T cases, the cause is a nonsense mutation in the ATM (Ataxia-Telangiectasia mutated) gene that encodes a premature termination codon (PTC). No effective treatments are available. However, our group has been developing and testing a series of compounds that effectively readthrough PTCs in the transcribed mRNA. Published and unpublished studies demonstrate the capability of these “SMRT” compounds (for Small Molecule ReadThrough) to readthrough PTCs and restore translation of functional ATM protein in in vivo and ex vivo experiments. The rationale to further develop SMRT compounds is strengthened by promising therapeutic results in mouse models for Duchenne muscular dystrophy and hereditary pulmonary arterial hypertension by our collaborators. However, success in these models does not ensure success in a multisystem, neurological disorder like A-T, in part because A-T uniquely requires the compound to cross the blood-brain barrier in adequate amounts. We have made considerable progress in our preclinical studies. We present data indicating that SMRT compounds elicit synthesis of full-length functional protein that penetrates the brain. We also recently solved a major hurdle in the field of A-T research: lack of an animal model that faithfully reflects clinical disease. In NINDS-supported studies, we used a double hit strategy to generate a mouse harboring both a clinically relevant PTC in the ATM gene and a knockout of a related DNA repair gene called aprataxin (Aptx). Characterization of this mouse model, including the profound, progressive ataxia that is a hallmark of A-T is complete. Now, we move to next logical phase: to use a rationalized and comprehensive approach to optimize our top candidate SMRT compound via medicinal chemistry. In AIM 1 we will develop and validate a novel potency assay specifically designed to evaluate potency across the 10 most common A-T causing nonsense mutations. In AIM 2 we will develop and validate an assay designed to confirm ATM function in human cells taking advantage of our unique repository of A-T patient derived cell lines. Finally, in AIM 3, these assays (along with those already standard in our labs to assess solubility, protein binding, blood brain barrier permeability, and toxicity) will be utilized to conduct a medicinal chemistry optimization campaign to generate a small set of candidate compounds with properties that maximize their chances of success in follow-on efficacy studies in our new A-T mouse model. Our work represents the first real hope for kids suffering from A-T's devastating effects.
项目摘要 共济失调 - telangiectia(A-T)是罕见的(每10万中〜1),但灾难性和致命疾病引起 10至30岁之间的运动功能和死亡的逐渐丧失。在大约三分之一的A-T中 病例,原因是ATM中的一个胡说八道突变(thaxia-telangiectia突变)基因,该基因编码A 过早终止密码子(PTC)。没有有效的治疗方法。但是,我们的小组一直在 开发和测试一系列化合物,这些化合物在转录的mRNA中有效地读取PTC。 已发表和未发表的研究证明了这些“ SMRT”化合物的能力(对于小分子 读取)以读取PTC并恢复体内和Ex Vivo的功能性ATM蛋白的翻译 实验。通过有希望的治疗结果,可以加强进一步发展SMRT化合物的基本原理 在小鼠模型中,用于我们的肌肉营养不良症和遗传性肺动脉高压 合作者。但是,这些模型的成功并不能确保在多系统的神经系统中取得成功 诸如A-T之类的疾病,部分原因是A-T独特需要化合物越过血脑屏障 足够的数量。我们在临床前研究中取得了长足的进步。我们提出指示的数据 SMRT复合引起穿透大脑的全长功能蛋白的合成。我们最近也 解决了A-T研究领域的一个主要障碍:缺乏忠实地反映临床疾病的动物模型。 在Ninds支持的研究中,我们使用了双重命中策略来产生携带临床上的小鼠 ATM基因中的相关PTC和称为Aprataxin(APTX)的相关DNA修复基因的敲除。 该小鼠模型的表征,包括A-T的标志的深刻的,进行性的共济失调 完全的。现在,我们转到下一个逻辑阶段:使用合理和全面的方法来优化 我们的顶级候选SMRT化合物通过医学化学。在AIM 1中,我们将开发和验证小说 效力测定专门设计用于评估10个最常见的A-T的效力,从而引起废话 突变。在AIM 2中,我们将开发并验证旨在确认人类细胞中ATM功能的测定法 利用我们独特的A-T患者衍生细胞系的存储库。最后,在AIM 3中,这些测定(沿着 在我们实验室中已经标准的那些可以评估溶解度,蛋白质结合,血脑屏障渗透性和 毒性)将用于进行医学化学优化运动,以产生一小部分 具有特性的候选化合物在我们的后续效率研究中获得成功的机会 新的A-T鼠标模型。我们的工作代表了患有A-T毁灭性影响的孩子的第一个真正希望。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul James Mathews其他文献

Paul James Mathews的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul James Mathews', 18)}}的其他基金

Behavioral and brain network effects of dysfunction in the cognitive cerebellum
认知小脑功能障碍对行为和大脑网络的影响
  • 批准号:
    10373891
  • 财政年份:
    2022
  • 资助金额:
    $ 50.87万
  • 项目类别:
Behavioral and brain network effects of dysfunction in the cognitive cerebellum
认知小脑功能障碍对行为和大脑网络的影响
  • 批准号:
    10651608
  • 财政年份:
    2022
  • 资助金额:
    $ 50.87万
  • 项目类别:
An optogenetic approach to exploring climbing fiber connections in the cerebellum
探索小脑攀爬纤维连接的光遗传学方法
  • 批准号:
    8520408
  • 财政年份:
    2011
  • 资助金额:
    $ 50.87万
  • 项目类别:
An optogenetic approach to exploring climbing fiber connections in the cerebellum
探索小脑攀爬纤维连接的光遗传学方法
  • 批准号:
    8125240
  • 财政年份:
    2011
  • 资助金额:
    $ 50.87万
  • 项目类别:
An optogenetic approach to exploring climbing fiber connections in the cerebellum
探索小脑攀爬纤维连接的光遗传学方法
  • 批准号:
    8332962
  • 财政年份:
    2011
  • 资助金额:
    $ 50.87万
  • 项目类别:
Synaptic Integration in the Medial Superior Olive
内侧上橄榄突触整合
  • 批准号:
    7383814
  • 财政年份:
    2006
  • 资助金额:
    $ 50.87万
  • 项目类别:

相似海外基金

Genome-wide dysregulation of R-loops in Ataxia Telangiectasia neurological pathogenesis
共济失调毛细血管扩张症神经发病机制中 R 环的全基因组失调
  • 批准号:
    10607414
  • 财政年份:
    2023
  • 资助金额:
    $ 50.87万
  • 项目类别:
Non-canonical roles for ATM kinase in regulating mitochondrial function and redox homeostasis
ATM 激酶在调节线粒体功能和氧化还原稳态中的非典型作用
  • 批准号:
    10461498
  • 财政年份:
    2022
  • 资助金额:
    $ 50.87万
  • 项目类别:
Non-canonical roles for ATM kinase in regulating mitochondrial function and redox homeostasis
ATM 激酶在调节线粒体功能和氧化还原稳态中的非典型作用
  • 批准号:
    10640088
  • 财政年份:
    2022
  • 资助金额:
    $ 50.87万
  • 项目类别:
Origins of DNA damage driving pathology in human neurodegeneration
DNA损伤驱动人类神经变性病理学的起源
  • 批准号:
    10569616
  • 财政年份:
    2022
  • 资助金额:
    $ 50.87万
  • 项目类别:
Functional characterization of the role of distinct domains of ATM and the impact of sequence variants on the DNA damage response
ATM 不同结构域的功能特征以及序列变异对 DNA 损伤反应的影响
  • 批准号:
    9796835
  • 财政年份:
    2019
  • 资助金额:
    $ 50.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了