Continuous ADL monitoring using computer vision to maintain independence and improve HRQoL in older adults at risk for AD/ADRD
使用计算机视觉进行连续 ADL 监测,以保持独立性并改善有 AD/ADRD 风险的老年人的 HRQoL
基本信息
- 批准号:10432682
- 负责人:
- 金额:$ 19.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAddressAdverse eventAgeAgingAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskArtificial IntelligenceBehaviorBehavioralBlindedCaregiversCaringClinicalClinical ManagementCognitiveCommunicationCommunitiesComputer Vision SystemsConsumptionCoughingCross-Sectional StudiesDataData CollectionData SetDementiaDetectionElderlyEnrollmentEnsureEvolutionExpert SystemsFamilyFocus GroupsFoundationsFour-dimensionalFutureGoalsHealthcareHomeHome environmentHourImpaired cognitionIncidenceIndividualInterventionLearningLinkLiving WillsLocationMachine LearningMeasurementMeasuresMedical RecordsMethodsModelingModernizationMonitorNatureNursing HomesOrganismOutcomeParticipantPatient Self-ReportPatientsPersonsPhasePhenotypePrivacyPrognosisProviderRandomizedRandomized Controlled TrialsRecording of previous eventsRiskSecureSingle-Blind StudySkilled Nursing FacilitiesSupport SystemSymptomsSystemTestingTimeUpdateWorkartificial intelligence algorithmbaseclinical encounterclinically actionableclinically relevantdesignefficacy trialfallsfunctional statushealth related quality of lifeimprovedindexinginformation processingmild cognitive impairmentnovelpatient home carepilot testpreventprimary outcomeprivacy preservationprogramssensortreatment as usual
项目摘要
To help older adults age independently at home, effectively monitoring and detecting changes in ADLs are critical
for preventing adverse events and maintaining health-related quality of life (HRQoL). However, ADLs are time
consuming to capture, highly subjective, and rarely documented in most clinical encounters. Artificial intelligence
(AI) computer vision is capable of automatically capturing a continuous timestream of activities and may address
these limitations, yet has been criticized for the “blackbox” nature of algorithms. Our preliminary data
identified that a unique AI approach using computer vision can capture ADLs without large tagged datasets to
learn a behavior while preserving privacy. Our hypothesis is that ADL-related data captured by an explainable
AI monitoring system can be a key contributor to preventing ADL-deficit associated adverse events and
maintaining HRQoL among individuals with Alzheimer's Disease and Alzheimer's Disease Related Dementias
(AD/ADRD) residing in home settings. In the proposed work, we will develop (R21) and assess (R33) a highly
personalized and clinically interpretable AI system, known as Cherry AI, to monitor ADLs, detect
changes early, predict relevant adverse events, and support healthcare planning for Program for All-
inclusive Care for the Elderly (PACE) providers, with an ultimate goal of maintaining HRQoL among
PACE enrollees with or without dementia. In the R21 phase (Stage 0), we will refine Cherry AI algorithms
and conduct focus groups of PACE clinicians to identify and summarize factors involved in clinical
management plans for ADLs. We will enroll PACE enrollees with a history of ADL deficits and varied cognitive
profiles [total n=20, 10 w/ mild cognitive impairment; 10 w/ subjective cognitive decline] and monitor ADLs in
homes using Cherry AI. PACE clinicians will evaluate participants’ ADLs using the Modified Barthel Index.
Correlations between Cherry AI-measured and clinician-rated ADLs will be evaluated. Qualitative focus groups
of 10-15 home care clinicians will be used to improve the Cherry AI interface. Specific aims include (1) refining
Cherry AI algorithms and (2) enhancing interpretability of the Cherry AI system to help clinicians make ADL
related management plans. In the R33 phase (pilot test, Stage I), we will assess the ability of Cherry AI to
help maintain or improve HRQoL in PACE enrollees with AD/ADRD by predicting future changes in ADLs
and associated adverse events, and assisting with ADL-related management. PACE enrollees (n=80) with
a history of ADL deficits will be stratified on cognitive phenotype and randomly assigned to one of two groups:
Cherry AI (intervention) vs. usual care (control) in a pilot single-blind randomized controlled trial. We will use
linear mixed- effect models to examine Cherry AI’s effect on maintaining HRQoL compared to PACE’s usual
care. Specific aims include comparing changes of HRQoL, incidence of adverse events, and changes in PACE
management plans between groups. This study will lead to an efficacy trial of Cherry AI monitoring to improve
HRQoL for community-dwelling seniors with AD/ADRD.
为了帮助老年人在家中独立养老,有效监测和检测 ADL 的变化至关重要
然而,ADL 是时间。
花费大量时间来捕捉,高度主观,并且在大多数临床遭遇中很少被记录。
(AI)计算机视觉能够自动捕捉连续时间流的活动,并可以解决
这些限制,但由于我们的初步数据的“黑箱”性质而受到批评。
发现使用计算机视觉的独特人工智能方法可以捕获 ADL,而无需大型标记数据集
我们的假设是,ADL 相关数据由可解释的对象捕获。
人工智能监控系统可以成为预防 ADL 缺陷相关不良事件的关键贡献者
维持阿尔茨海默病和阿尔茨海默病相关痴呆患者的 HRQoL
(AD/ADRD)居住在家庭环境中。在拟议的工作中,我们将开发(R21)并高度评估(R33)。
个性化和临床可解释的人工智能系统,称为 Cherry AI,用于监控 ADL、检测
尽早改变,预测相关不良事件,并支持全民计划的医疗保健规划-
包容性老年人护理 (PACE) 提供者的最终目标是维持老年人的 HRQoL
在 R21 阶段(第 0 阶段),我们将完善 Cherry AI 算法。
并开展 PACE 焦点小组来识别和总结临床中涉及的因素
我们将招募有 ADL 缺陷历史和不同认知能力的 PACE 参与者。
概况 [总数 = 20,10 例有轻度认知障碍;10 例有主观认知下降] 并监测 ADL
使用 Cherry AI 的家庭将使用修正巴塞尔指数评估参与者的 ADL。
将评估 Cherry AI 测量的 ADL 与临床医生评定的 ADL 之间的相关性。
10-15 名家庭护理教区居民将用于改进 Cherry AI 界面,具体目标包括 (1) 完善。
Cherry AI 算法以及 (2) 增强 Cherry AI 系统的可解释性,以帮助顾客进行 ADL
在R33阶段(试点测试,第一阶段),我们将评估Cherry AI的能力。
通过预测 ADL 的未来变化,帮助维持或改善患有 AD/ADRD 的 PACE 参与者的 HRQoL
以及相关的不良事件,并协助 PACE 参与者 (n=80) 进行 ADL 相关管理。
ADL 缺陷史将根据认知表型进行分层,并随机分配到以下两组之一:
我们将在试点单盲随机对照试验中使用 Cherry AI(干预)与常规护理(对照)。
线性混合效应模型,用于检查 Cherry AI 与通常的 PACE 相比对维持 HRQoL 的影响
具体目标包括比较 HRQoL 的变化、不良事件的发生率以及 PACE 的变化。
这项研究将导致 Cherry AI 监控的有效性试验,以改善群体之间的管理计划。
患有 AD/ADRD 的社区老年人的 HRQoL。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiunn Benjamin Heng其他文献
Jiunn Benjamin Heng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiunn Benjamin Heng', 18)}}的其他基金
Continuous ADL monitoring using computer vision to maintain independence and improve HRQoL in older adults at risk for AD/ADRD
使用计算机视觉进行连续 ADL 监测,以保持独立性并改善有 AD/ADRD 风险的老年人的 HRQoL
- 批准号:
10650307 - 财政年份:2022
- 资助金额:
$ 19.25万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 19.25万 - 项目类别:
Pterygopalatine Fossa (PPF) Block as an Opioid Sparing Treatment for AcuteHeadache in Aneurysmal Subarachnold Hemorrhage
翼腭窝 (PPF) 阻滞作为阿片类药物节省治疗动脉瘤性蛛网膜下腔出血的急性头痛
- 批准号:
10584712 - 财政年份:2023
- 资助金额:
$ 19.25万 - 项目类别:
Mindful Steps: A Web-Based Mind-Body Exercise Intervention to Promote Physical Activity in Chronic Cardiopulmonary Disease
正念步骤:基于网络的身心运动干预,促进慢性心肺疾病的体力活动
- 批准号:
10732824 - 财政年份:2023
- 资助金额:
$ 19.25万 - 项目类别:
Preserving Geriatric Muscle with an Osteoporosis Medication
用骨质疏松症药物保护老年肌肉
- 批准号:
10633791 - 财政年份:2023
- 资助金额:
$ 19.25万 - 项目类别:
Continuous ADL monitoring using computer vision to maintain independence and improve HRQoL in older adults at risk for AD/ADRD
使用计算机视觉进行连续 ADL 监测,以保持独立性并改善有 AD/ADRD 风险的老年人的 HRQoL
- 批准号:
10650307 - 财政年份:2022
- 资助金额:
$ 19.25万 - 项目类别: