Clinical and Biological Factors Predicting Lung Transplant Textbook Outcomes (U01)
预测肺移植教科书结果的临床和生物学因素(U01)
基本信息
- 批准号:10431130
- 负责人:
- 金额:$ 47.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-05 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AbdomenAcuteAddressAdoptedAdultAgeAgingBiologicalBiological AgingBiological AssayBiological FactorsCellsCharacteristicsClinicalCollaborationsComplicationCountryDataData Coordinating CenterDisciplineEconomic BurdenEnrollmentFailureFreedomFunctional disorderFunding OpportunitiesFutureGeographyGoalsGraft SurvivalHealth systemHospital CostsImmuneImmune systemImmunityIndividualInfectionInterventionKidney FailureLungLung TransplantationLung diseasesMachine LearningMeasurementMeasuresMinnesotaModelingOperative Surgical ProceduresOrganOrthopedic SurgeryOutcomeOutputParticipantPatient-Focused OutcomesPatientsPennsylvaniaPeptidesPerformancePerioperativePerioperative complicationPhysiologicalPositioning AttributePostoperative ComplicationsPostoperative PeriodPredictive FactorProceduresProcessProspective cohortProtocols documentationProviderPublicationsPublishingRegistriesResearchResearch Project GrantsResourcesRiskRisk AssessmentRisk FactorsSiteSupervisionSurrogate EndpointTextbooksTimeTransplant RecipientsTransplantationUniversitiesViralbasebody systemclinical centercostcytokinegraft dysfunctiongraft failureimprovedimproved outcomelung allograftmachine learning predictionmodifiable risknoveloutcome predictionpredictive modelingpredictive toolsrecruitresponserisk prediction modelsurgery outcometransplant centers
项目摘要
PROJECT SUMMARY/ABSTRACT
While lung transplantation is the only treatment option for end-stage lung disease, early post-operative
complications are common and limit long-term patient survival while concomitantly increasing the economic
burden of an already expensive therapy. Successful surgical outcomes can be defined by an ideal or “textbook
outcome” (TO) where the patient does not have significant early post-operative complications, which for lung
transplant can include primary graft dysfunction, acute lung allograft dysfunction, renal failure or infection. Our group
recently published the first lung transplant TO definition based on single-center data and found failure to achieve TO
was strongly associated with worse patient survival and significantly higher cost to the health system. A subsequent
registry analysis of 62 US lung transplant centers found the rate of achieving TO ranged from 27% to 72%,
emphasizing wide variability in outcomes and potential for intervention and improvement. The Lung Transplant
Clinical Center in this proposal include Duke University, University of Louisville, University of Minnesota and
University of Pennsylvania. These centers are four of the oldest and most respected lung transplant centers in
the country with geographic and size diversity, including small, medium, and large volumes. Our proposal aims
to understand the critical pretransplant clinical characteristics, as well as novel underlying biologic aging differences,
that contribute to worse early outcomes, or failure to achieve a TO. We hypothesize that specific clinical variables and
biological aging measures can predict early complications. Biological age in the pretransplant patient may be driven
by organ specific advanced lung disease and therefore ameliorated with lung transplant. Alternatively, biological age
may be a systemic process across organs systems and does not resolve with transplant. To determine the significance
of organ specific versus systemic aging, we will evaluate pretransplant biological aging in the recipient's pretransplant
immune system and explanted lung. Using iterative machine learning we will develop and validate a TO prediction
model based on the identified clinical variables and biological measurements to determine a personalized
perioperative risk of lung transplantation for individual candidates. More than just a predictive tool, this proposal will
allow for identification of potentially modifiable clinical and biologic variables that can be leveraged to improve
outcomes. As part of the larger Lung Transplant Consortium, we will enroll participants and contribute data and
biospecimens through a common research protocol under the auspices of the Lung Transplant Consortium Data
Coordinating Center and Steering Committee.
项目概要/摘要
虽然肺移植是终末期肺病的唯一治疗选择,但术后早期
并发症很常见,限制了患者的长期生存,同时也增加了经济负担
成功的手术结果可以通过理想的或“教科书”来定义。
结果”(TO),其中患者没有明显的早期术后并发症,这对于肺
移植可能包括原发性移植物功能障碍、急性肺同种异体移植物功能障碍、肾功能衰竭或感染。
近期发表首个基于单中心数据的肺移植TO定义,发现未能实现TO
与患者生存率较差和卫生系统成本显着升高密切相关。
对美国 62 个肺移植中心的注册分析发现,达到 TO 的比率在 27% 到 72% 之间,
强调肺移植结果的巨大差异以及干预和改善的潜力。
该提案中的临床中心包括杜克大学、路易斯维尔大学、明尼苏达大学和
这些中心是宾夕法尼亚大学最古老、最受尊敬的四个肺移植中心。
我们提案的目标是具有地理和规模多样性的国家,包括小型、中型和大型。
了解关键的移植前临床特征以及新的潜在生物衰老差异,
导致更糟糕的早期结果,或未能达到目标。我们追求特定的临床变量和
生物年龄测量可以预测移植前患者的早期并发症。
器官特异性晚期肺部疾病,因此可以通过肺移植得到改善。
可能是一个跨器官系统的系统性过程,并不能通过移植来确定其意义。
器官特异性老化与全身老化的比较,我们将评估受者移植前的移植前生物老化
我们将使用迭代机器学习来开发和验证 TO 预测。
基于确定的临床变量和生物测量的模型来确定个性化的
该提案不仅仅是一个预测工具,还将为个体候选人提供肺移植的围手术期风险。
允许识别潜在可修改的临床和生物学变量,这些变量可用于改善
作为更大的肺移植联盟的一部分,我们将招募参与者并贡献数据和成果。
在肺移植联盟数据的支持下通过共同研究方案获取生物样本
协调中心和指导委员会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Galen Hartwig其他文献
Matthew Galen Hartwig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Galen Hartwig', 18)}}的其他基金
Clinical and Biological Factors Predicting Lung Transplant Textbook Outcomes (U01)
预测肺移植教科书结果的临床和生物学因素(U01)
- 批准号:
10677558 - 财政年份:2022
- 资助金额:
$ 47.91万 - 项目类别:
Perpetual Organ Preservation and Rehabilitation (POPR)
永久器官保存和康复(POPR)
- 批准号:
10570609 - 财政年份:2022
- 资助金额:
$ 47.91万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
A Novel Assay to Improve Translation in Analgesic Drug Development
改善镇痛药物开发转化的新方法
- 批准号:
10726834 - 财政年份:2023
- 资助金额:
$ 47.91万 - 项目类别:
MECHANISMS OF VISCERAL PAIN DRIVEN BY SMALL INTESTINAL MICROBIOTA
小肠微生物驱动内脏疼痛的机制
- 批准号:
10836298 - 财政年份:2023
- 资助金额:
$ 47.91万 - 项目类别:
Development of a Novel Animal Model for Spinal Cord Injury with Sepsis
脓毒症脊髓损伤新型动物模型的开发
- 批准号:
10665862 - 财政年份:2023
- 资助金额:
$ 47.91万 - 项目类别:
Integration of non-invasive deep tissue microwave thermometry in the VectRx hyperthermia device in a transgenic liver tumor pig model
在转基因肝肿瘤猪模型中将非侵入性深部组织微波测温技术集成到 VectRx 热疗装置中
- 批准号:
10697183 - 财政年份:2023
- 资助金额:
$ 47.91万 - 项目类别: