Integration of Geriatric Measures Alongside Disease-Based Measures to Advance Precision Oncology for Older Veterans with Multiple Myeloma

将老年治疗措施与基于疾病的措施相结合,为患有多发性骨髓瘤的老年退伍军人推进精准肿瘤学

基本信息

  • 批准号:
    10426038
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Although leading cancer-focused organizations such as the American Society of Clinical Oncology now recommend geriatric assessments for all older adults with cancer, these assessments have not been widely adopted within VA and elsewhere due to limitations in resources, geriatrics expertise, and time in busy oncology clinics. The VA National Precision Oncology Program is profiling tumor genetics in myeloma and other cancers to characterize disease and personalize therapy in unprecedented fashion. However, truly personalized cancer treatment for older Veterans must be based not only on tumor “genotype,” but also on older adult “phenotype.” Dr. Clark DuMontier is a geriatrician and clinical investigator focused on integrating geriatric measures into oncology. The research proposed for this CDA-2 will advance Dr. DuMontier’s long-term goal of developing feasible and valid tools to help VA oncologists integrate frailty and multimorbidity alongside myeloma-specific factors to advance precision oncology for older Veterans with myeloma. The objectives of this application are to electronically measure frailty and multimorbidity in over 5000 Veterans age ³ 65 years with myeloma newly treated in VA from 2004-present using healthcare data that is readily available within VA’s nationally integrated health system. Preliminary findings demonstrate that frailty and multimorbidity can be rapidly assessed using diagnostic and procedural codes and data from the electronic health record (EHR). Aim 1 will determine whether an electronic frailty index, the VA-FI, independently predicts mortality and hospitalizations in older Veterans with myeloma, and whether it modifies the effect of initial therapy on these outcomes. Analyses will include important myeloma-specific factors such as triplet or doublet chemotherapy, stage and cytogenetics, sociodemographic variables, and prognostic labs. Aim 2 will determine whether multimorbidity patterns independently predict mortality and hospitalizations in myeloma, and whether they modify the effect of specific regimens on these outcomes. A machine learning analysis will be applied to 67 chronic conditions measured within the VA database to define these patterns and their impact in older Veterans with myeloma. Aim 3 will develop and validate a predictive risk model for mortality that incorporates frailty and multimorbidity with myeloma-specific factors. Once validated, this model will be translated into a clinical decision support tool embedded in the VA EHR. This tool will help VA oncologists to rapidly estimate frailty and multimorbidity and enhance individualized prognosis and treatment decisions for older Veterans with myeloma. The mentored research and training program described in this CDA-2 will accelerate Dr. DuMontier’s development into an independent VA investigator in geriatric oncology. His mentorship team includes Drs. Jane Driver, Nikhil Munshi, Michael Gaziano, and Mary Brophy—leaders in geriatrics, oncology, and big data science from the New England Geriatric Research Education Clinical Center (GRECC), the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), and the VA National Precision Oncology Program. Under the guidance of these mentors and in collaboration with MAVERIC, Dr. DuMontier will pursue training that will provide (1) experience with large database investigation; (2) expertise in advanced statistical analyses and machine learning; (3) project management and multidisciplinary collaboration; and (4) communication, leadership skills, and professional development. This training and mentored research will prepare him to be competitive for a VA Merit Award toward independence as a VA clinician investigator.
尽管领先的以癌症为中心的组织,例如美国临床学会 肿瘤学现在建议所有患有癌症的老年人的老年病评估,这些 由于局限性的限制 资源,老年医学专业知识以及繁忙的肿瘤学诊所的时间。 VA国家精确 肿瘤学计划是骨髓瘤和其他癌症中的肿瘤遗传学特征来表征 以空前的方式疾病和个性化治疗。但是,真正个性化的癌症 老年退伍军人的治疗不仅必须基于肿瘤的“基因型”,还必须基于老年人 “表型。” Clark Dumontier博士是一位专注于整合的老年医生和临床研究者 老年量措施纳入肿瘤学。为此CDA-2提出的研究将推进博士。 Dumontier的长期目标是开发可行有效的工具,以帮助VA肿瘤学家整合 脆弱和多种疾病以及骨髓瘤特异性因素,以提高精度肿瘤学 患有骨髓瘤的老年退伍军人。该应用的目标是以电子方式测量 超过5000名退伍军人年龄的脆弱和多种疾病,骨髓瘤新近治疗了65岁 从2004年至今使用医疗保健数据,在VA的全国整合中很容易获得 卫生系统。初步发现表明,脆弱和多个多发病可能会迅速 使用电子健康记录的诊断和程序代码和数据进行评估 (EHR)。 AIM 1将确定电子脆弱指数(VA-FI)是否独立预测 老年退伍军人的骨髓瘤的死亡率和住院 关于这些结果的初步疗法。分析将包括重要的骨髓瘤特异性因素 例如三重疗法或双重化疗,阶段和细胞遗传学,社会人口统计学变量, 和预后实验室。 AIM 2将确定多发性模式是否独立预测 骨髓瘤的死亡率和住院治疗,以及它们是否改变了特定方案的影响 关于这些结果。机器学习分析将应用于67个慢性条件 在VA数据库中测量以定义这些模式及其对老年退伍军人的影响 骨髓瘤。 AIM 3将开发并验证纳入死亡率的预测风险模型 具有骨髓瘤特异性因素的脆弱和多种疾病。一旦验证,该模型将是 翻译成VA EHR中嵌入的临床决策支持工具。该工具将帮助VA 肿瘤学家迅速估计脆弱和多个多发病,并增强个性化预后 和患有骨髓瘤老年退伍军人的治疗决定。指导的研究和培训 此CDA-2中描述的计划将加速Dumontier博士的发展成独立 VA老年肿瘤学研究者。他的攻击团队包括Drs。简·司机,尼基尔 Munshi,Michael Gaziano和Mary Brophy - 老年医学,肿瘤学和大数据科学领域的领导者 来自新英格兰老年研究教育临床中心(GRECC), 马萨诸塞州退伍军人流行病学研究与信息中心(Maveric)和 VA国家精确肿瘤学计划。在这些导师的指导下 Dumontier博士与Maveric的合作将进行(1)经验,进行培训 大量数据库投资; (2)高级统计分析和机器方面的专业知识 学习; (3)项目管理和多学科合作; (4)交流, 领导技能和专业发展。这项培训和修改的研究将准备 他将成为VA临床研究者的独立奖项。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clark William DuMontier其他文献

Clark William DuMontier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clark William DuMontier', 18)}}的其他基金

Integration of Geriatric Measures Alongside Disease-Based Measures to Advance Precision Oncology for Older Veterans with Multiple Myeloma
将老年治疗措施与基于疾病的措施相结合,为患有多发性骨髓瘤的老年退伍军人推进精准肿瘤学
  • 批准号:
    10578715
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
  • 批准号:
    62372118
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
  • 批准号:
    82300679
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
  • 批准号:
    82301784
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
  • 批准号:
    82301217
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
  • 批准号:
    82373667
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Advancing Precision Lung Cancer Surveillance and Outcomes in Diverse Populations (PLuS2)
推进不同人群的精准肺癌监测和结果 (PLuS2)
  • 批准号:
    10752848
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A chatbot-powered G8 screening intervention to facilitate referrals to a comprehensive geriatric assessment among older adults with cancer
由聊天机器人驱动的 G8 筛查干预措施,有助于将患有癌症的老年人转介到进行全面的老年评估
  • 批准号:
    10179033
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
A chatbot-powered G8 screening intervention to facilitate referrals to a comprehensive geriatric assessment among older adults with cancer
由聊天机器人驱动的 G8 筛查干预措施,有助于将患有癌症的老年人转介到进行全面的老年评估
  • 批准号:
    10459431
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Integration of Geriatric Measures Alongside Disease-Based Measures to Advance Precision Oncology for Older Veterans with Multiple Myeloma
将老年治疗措施与基于疾病的措施相结合,为患有多发性骨髓瘤的老年退伍军人推进精准肿瘤学
  • 批准号:
    10578715
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Every Day Counts: A Lifestyle Program for Women with Metastatic Breast Cancer
每一天都很重要:针对转移性乳腺癌女性的生活方式计划
  • 批准号:
    9371470
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了