Contextualized daily prediction of lapse risk in opioid use disorder by digital phenotyping
通过数字表型分析对阿片类药物使用障碍的失效风险进行情境化每日预测
基本信息
- 批准号:10427354
- 负责人:
- 金额:$ 68.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AbstinenceAcousticsAdvertisingAffectAlcohol consumptionAlcoholsBehaviorCaringCellular PhoneCharacteristicsClinicalCommunicationCommunitiesData SourcesDiagnosisDistalDrug usageEcological momentary assessmentEnrollmentEquilibriumFaceFacebookFamilyFoundationsFrequenciesFriendsGenderGoalsHealthHomeIndividualIntakeLocationMeasuresMedicalMental disordersMethodsMobile Health ApplicationModelingMonitorNarcoticsNatural Language ProcessingOpioidPaperParticipantPatient RecruitmentsPatient Self-ReportPatientsPatternPersonsPharmaceutical PreparationsPhenotypePhysical activityPositioning AttributePredictive AnalyticsProbabilityPsychopathologyPublishingRaceRecoveryRecovery SupportRelapseRiskRisk FactorsSamplingServicesSeveritiesSignal TransductionSocial EnvironmentSocial NetworkStimulantSubstance Use DisorderSupport SystemSurveysSystemTelephoneTestingText MessagingTheoretical modelTimeTrainingVisualVoiceaddictionalcohol testingbasecare providerscare systemschronic painclinical carecomorbiditycostcravingdigitaldisorder later incidence preventiondrug abstinenceexperienceinformation gatheringinnovationmHealthmachine learning methodmeetingsmicrophonemobile applicationopioid useopioid use disorderoverdose deathpeerpersonalized carepredictive modelingpreventreal time modelrecruitrelapse riskrisk predictionrisk prediction modelrural settingsensorsignal processingskillssleep qualitysobrietysocial mediastressorsubstance usesubstance usersuburb
项目摘要
PROJECT SUMMARY
Opioid use disorder is increasingly widespread, leading to devastating consequences and costs for patients and their
families, friends, and communities. Available treatments for opioid and other substance use disorders (SUD) are not
successful at sustaining sobriety. The vast majority of people with SUD relapse within a year. Critically, they often fail to
detect dynamic, day-by-day changes in their risk for relapse and do not adequately employ skills they developed or take advantage of support available through continuing care. The broad goals of this project are to develop and deliver a highly contextualized, lapse risk prediction models for forecasting day-by-day probability of opioid and other drug use lapse among people pursuing drug abstinence. This lapse risk prediction model will be delivered within the Addiction-Comprehensive Health Enhancement Support System (A-CHESS) mobile app, which has been established by RCT as a state-of-the-art mHealth system for providing continuing care services for alcohol and substance use disorders.
To accomplish these broad goals, a diverse sample of 480 participants with opioid use disorder who are pursing
abstinence will be recruited. These participants will be followed for 12 months of their recovery, with observations
occurring as early as one week post-abstinence and as late as 18 months post-abstinence across participants in the
sample. Well-established distal, static relapse risk signals (e.g., addiction severity, comorbid psychopathology) will be
measured on intake. A range of more proximal, time-varying opioid (and other drug use) lapse risk signals will also be
collected via participants’ smartphones. These signals include self-report surveys every two months, daily ecological
momentary assessments, daily video recovery “check-ins”, voice phone call and text message logs, text message
content, moment-by-moment location (via smartphone GPS and location services), physical activity (via smartphone
sensors), and usage of the mobile A-CHESS Recovery Support app. The predictive power of these risk signals will be
further increased by anchoring them within an inter-personal context of known people, locations, dates, and times that
support or detract from participants’ abstinence efforts. Machine learning methods will be used to train, validate, and test opioid (and other drug) lapse risk prediction models based on these contextualized static and dynamic risk signals.
These lapse risk prediction models will provide participant specific, day-by-day probabilistic forecast of a lapse to opioid (or other drug) use among opioid abstinent individuals. These lapse risk prediction models will be formally added to the A-CHESS continuing care mobile app at the completion of the project for use in clinical care. These project goals position A-CHESS to make relapse prevention and recovery support, information, and risk monitoring available to patients continuously. Compared to conventional continuing care, A-CHESS will provide personalized care and be available and implemented during moments of greatest need. Integrated real-time risk prediction holds substantial promise to encourage sustained recovery through adaptive use of these continuing care services.
项目摘要
阿片类药物使用障碍越来越普遍,导致患者及其其成本造成毁灭性的后果和成本
家庭,朋友和社区。阿片类药物和其他药物使用障碍(SUD)的可用治疗方法不是
成功维持清醒。绝大多数具有SUD继电器的人在一年内。至关重要的是,他们常常无法
检测救济风险的动态,日常变化,并且无法充分利用他们开发的技能,或者通过继续护理利用支持。该项目的广泛目标是开发和提供高度背景化的,失效风险预测模型,以预测阿片类药物的日常概率和其他毒品使用的概率,并在追求戒毒的人们中消失。这种失去风险预测模型将在成瘾的健康增强支持系统(A-CHESS)移动应用程序中提供,该应用已建立为最先进的MHealth系统,用于为酒精和物质使用障碍提供持续的护理服务。
为了实现这些广泛的目标,潜水员样本的480名参与者患有阿片类药物使用障碍,他们正在追求
戒酒将被招募。这些参与者将恢复12个月,并进行观察
在侵犯后的一周,直到18个月后的参与者发生后至18个月
样本。建立良好的盘式,静态继电器风险信号(例如成瘾的严重程度,合并症)将是
以进气口测量。一系列更近端,时变的阿片类药物(和其他药物使用)也将是风险信号
通过参与者的智能手机收集。这些信号包括每两个月的自我报告调查,每日生态
瞬时评估,每日视频恢复“签到”,语音电话和短信日志,短信
内容,一时的位置(通过智能手机GP和位置服务),体育活动(通过智能手机
传感器),以及移动A-Chess恢复支持应用程序的使用。这些风险信号的预测能力将是
通过将其锚定在知名人士,位置,日期和时代的人际关系环境中,进一步增加了。
支持或发现参与者的禁欲工作。机器学习方法将用于基于这些上下文化的静态和动态风险信号来训练,验证和测试阿片类药物(和其他药物)风险预测模型。
这些失误风险预测模型将为参与者提供特定的日常概率预测,以预测阿片类药物戒烟者中使用阿片类药物(或其他药物)使用。这些失误风险预测模型将在项目完成时正式添加到A-Chess Chess Chans Care Mobile应用程序中,以供临床护理。这些项目目标将A-Bead定位为预防和恢复支持,信息和风险监控,并不断地为患者提供。与传统的持续护理相比,A-Chess将提供个性化的护理,并在最需要的时刻提供和实施。实时风险预测具有实质性的承诺,可以通过适应使用这些持续护理服务来鼓励持续恢复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John J. Curtin其他文献
Role of specific cytotoxic lymphocytes in cellular immunity against murine cytomegalovirus
特异性细胞毒性淋巴细胞在针对鼠巨细胞病毒的细胞免疫中的作用
- DOI:
- 发表时间:
1980 - 期刊:
- 影响因子:3.1
- 作者:
HO Monto;John J. Curtin - 通讯作者:
John J. Curtin
John J. Curtin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John J. Curtin', 18)}}的其他基金
Contextualized daily prediction of lapse risk in opioid use disorder by digital phenotyping
通过数字表型分析对阿片类药物使用障碍的失效风险进行情境化每日预测
- 批准号:
10172881 - 财政年份:2019
- 资助金额:
$ 68.33万 - 项目类别:
Contextualized daily prediction of lapse risk in opioid use disorder by digital phenotyping
通过数字表型分析对阿片类药物使用障碍的失效风险进行情境化每日预测
- 批准号:
9980350 - 财政年份:2019
- 资助金额:
$ 68.33万 - 项目类别:
Contextualized daily prediction of lapse risk in opioid use disorder by digital phenotyping
通过数字表型分析对阿片类药物使用障碍的失效风险进行情境化每日预测
- 批准号:
10642766 - 财政年份:2019
- 资助金额:
$ 68.33万 - 项目类别:
RCT targeting noradrenergic stress mechanisms in alcoholism with doxazosin
多沙唑嗪针对酒精中毒中去甲肾上腺素能应激机制的随机对照试验
- 批准号:
9134571 - 财政年份:2015
- 资助金额:
$ 68.33万 - 项目类别:
Dynamic, real-time prediction of alcohol use lapse using mHealth technologies
使用移动医疗技术动态、实时预测酒精滥用情况
- 批准号:
9275293 - 财政年份:2015
- 资助金额:
$ 68.33万 - 项目类别:
RCT targeting noradrenergic stress mechanisms in alcoholism with doxazosin
多沙唑嗪针对酒精中毒中去甲肾上腺素能应激机制的随机对照试验
- 批准号:
8986543 - 财政年份:2015
- 资助金额:
$ 68.33万 - 项目类别:
Dynamic, real-time prediction of alcohol use lapse using mHealth technologies
使用移动医疗技术动态、实时预测饮酒失误
- 批准号:
8986398 - 财政年份:2015
- 资助金额:
$ 68.33万 - 项目类别:
RCT targeting noradrenergic stress mechanisms in alcoholism with doxazosin
多沙唑嗪针对酒精中毒中去甲肾上腺素能应激机制的随机对照试验
- 批准号:
9327840 - 财政年份:2015
- 资助金额:
$ 68.33万 - 项目类别:
Clinical Relevance of Stress Neuroadaptation in Tobacco Dependence
压力神经适应与烟草依赖的临床相关性
- 批准号:
8685929 - 财政年份:2012
- 资助金额:
$ 68.33万 - 项目类别:
Clinical Relevance of Stress Neuroadaptation in Tobacco Dependence
压力神经适应与烟草依赖的临床相关性
- 批准号:
8507199 - 财政年份:2012
- 资助金额:
$ 68.33万 - 项目类别:
相似国自然基金
航天低温推进剂加注系统气液状态声学监测技术研究
- 批准号:62373276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于声学原位测试的金属表面液滴弹跳次数仿生调控
- 批准号:52350039
- 批准年份:2023
- 资助金额:80 万元
- 项目类别:专项基金项目
声学信号调控语音反馈脑网络在腭裂代偿语音康复中的机制研究
- 批准号:82302874
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
海洋声学功能材料发展战略研究
- 批准号:52342304
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:专项项目
相似海外基金
Contextualized daily prediction of lapse risk in opioid use disorder by digital phenotyping
通过数字表型分析对阿片类药物使用障碍的失效风险进行情境化每日预测
- 批准号:
10172881 - 财政年份:2019
- 资助金额:
$ 68.33万 - 项目类别:
Contextualized daily prediction of lapse risk in opioid use disorder by digital phenotyping
通过数字表型分析对阿片类药物使用障碍的失效风险进行情境化每日预测
- 批准号:
9980350 - 财政年份:2019
- 资助金额:
$ 68.33万 - 项目类别:
Contextualized daily prediction of lapse risk in opioid use disorder by digital phenotyping
通过数字表型分析对阿片类药物使用障碍的失效风险进行情境化每日预测
- 批准号:
10642766 - 财政年份:2019
- 资助金额:
$ 68.33万 - 项目类别:
Clarification on ecological speciation of the Ruddy Kingfisher with intrinsic advertising calls by a satellite tracking method.
通过卫星跟踪方法阐明带有内在广告叫声的红翠鸟的生态形态。
- 批准号:
16K14796 - 财政年份:2016
- 资助金额:
$ 68.33万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research