In vivo Wireless Sensors for Gut Redox Monitoring to Understand Host and Microbe Physiology
用于肠道氧化还原监测的体内无线传感器,以了解宿主和微生物的生理学
基本信息
- 批准号:10427439
- 负责人:
- 金额:$ 19.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AblationAcuteAddressAffectAgreementAirAnimal ModelAnimalsAntibiotic TherapyAntibioticsAutomationBacteriaBasic ScienceChemicalsChildCouplingDataData CollectionDevelopmentDevicesDiagnosisDietDisciplineDiseaseElectronsEnvironmentEquilibriumFunctional disorderFutureGasesGastrointestinal tract structureGeneticGoalsHealthHealth PromotionHomeostasisHumanHydrogen PeroxideImmuneImmune systemImpairmentIn SituInflammatory Bowel DiseasesInterventionInvestigationLarge IntestineLeadLife StyleLinkLocationMalignant NeoplasmsMalnutritionMarasmusMeasurementMeasuresMetabolicMicrobeMonitorMovementMusNon-Insulin-Dependent Diabetes MellitusObesityOxidantsOxidation-ReductionOxidesOxygenPathogenicityPatternPhysiologicalPhysiologyPlayQuality of lifeRattusResearchResearch PersonnelRodentRoleSamplingSignal TransductionSmall IntestinesSumSystemTechniquesTechnologyTestingTimeTranslationsUltrasonic waveUnhealthy DietWorkawakebasedesigndysbiosisexperimental studyhost microbiomehost-microbe interactionsimmunoregulationimplantationin vivoin vivo monitoringmicrobiomemicrobiome alterationmicrobiome compositionmicrobiotaminiaturized devicemolecular markernew technologynoveloxidationpreventresponsesensorsmall moleculetooltreatment strategyultrasoundwirelesswireless electronicwireless sensor
项目摘要
PROJECT SUMMARY
Non-communicable diseases (NCDs) including obesity, type 2 diabetes, inflammatory bowel diseases
(IBDs), and cancer impose a staggering burden on global economies and quality of life. Evidence is mounting
that many NCDs – particularly those of the gastrointestinal tract – are influenced by the interplay of the
microbiome and the host immune system. A leading hypothesis connecting microbes, lifestyle, and NCDs is that
an unhealthy diet and antibiotic use select for microbes that promote chemical oxidation in the gut. This oxidation
disrupts host and microbiome homeostasis leading to inappropriate, and self-reinforcing, immune and metabolic
dysregulation. However, quantitative hypothesis testing is currently impossible because researchers lack the
necessary tools to directly test gut oxidation in model organisms (rats and mice). Existing data is correlative or
relies on imprecise measures (e.g. genetic ablation and competition experiments) preventing experimental study
of how changes in the microbiota lead to disease.
Our proposal outlines the development of a platform for real-time automated measurement of in vivo
gut oxidation in rodents. The platform comprises implantable / ingestible Oxidation Reduction Potential (ORP)
sensors and a wearable data collection device. ORP is an integrated measure of a chemical environment’s
propensity to lose or gain electrons, or in other words its tendency to get oxidized or reduced. Recent work has
applied ORP sensing to fecal samples from mice and humans, demonstrating ORP changes due to antibiotics
and acute malnutrition. While these results are strongly suggesting of a causative role for gut oxidation in
pathophysiology, the relevance of fecal ORP to gut physiological conditions is unclear.
We propose two major aims for our work to address existing ex vivo technique limitations, and promote
better understanding of gut redox pathophysiology: 1) Develop technology to enable long-term automated in vivo
ORP measurements in awake rodents, 2) determine how changes to the microbiome affect in vivo ORP, and
identify specific chemical correlates of the gut redox state. In achieving these goals, we will use novel ultrasound
wake-up and galvanic coupling technologies to overcome the fundamental challenges of device miniaturization
for implantation in the rodent GI-tract, robustness against animal movement and internal device movement, and
data collection automation for practical, scalable experiments.
This work is significant because new tools to identify impending changes in redox status in the gut are
likely to advance basic science by testing a critical emerging hypothesis in the field. Simultaneously, the
technological advances required for this study make it possible to explore redox patterns for diagnosis, and
strategies for treatment, of diseases associated with redox imbalance, providing significant opportunities for
translational work.
项目概要
非传染性疾病 (NCD),包括肥胖、2 型糖尿病、炎症性肠病
(IBD),癌症给全球经济和生活质量带来了巨大的负担。
许多非传染性疾病,特别是胃肠道疾病,都受到肠道菌群相互作用的影响
将微生物、生活方式和非传染性疾病联系起来的一个主要假设是:
不健康的饮食和抗生素的使用会选择促进肠道化学氧化的微生物。
破坏宿主和微生物组的稳态,导致不适当的、自我强化的免疫和代谢
然而,定量假设检验目前是不可能的,因为研究人员缺乏
直接测试模型生物(大鼠和小鼠)肠道氧化的必要工具,现有数据是相关的或相关的。
依赖不精确的措施(例如基因消融和竞争实验)阻碍实验研究
微生物群的变化如何导致疾病。
我们的提案概述了体内实时自动测量平台的开发
该平台包括可植入/可摄入的氧化还原电位 (ORP)。
传感器和可穿戴数据收集设备是化学环境的综合测量。
失去或获得电子的倾向,或者换句话说,它被氧化或还原的倾向。
将 ORP 传感应用于小鼠和人类的粪便样本,证明抗生素引起的 ORP 变化
虽然这些结果强烈表明肠道氧化在其中起着致病作用。
病理生理学方面,粪便 ORP 与肠道生理状况的相关性尚不清楚。
我们为我们的工作提出了两个主要目标,以解决现有的离体技术局限性,并促进
更好地了解肠道氧化还原病理生理学:1)开发技术以实现体内长期自动化
清醒啮齿动物的 ORP 测量,2) 确定微生物组的变化如何影响体内 ORP,以及
确定肠道氧化还原状态的特定化学相关性 为了实现这些目标,我们将使用新型超声波。
唤醒和电流耦合技术,克服设备小型化的根本挑战
用于植入啮齿动物胃肠道,对动物运动和内部装置运动的鲁棒性,以及
数据收集自动化,用于实用、可扩展的实验。
这项工作意义重大,因为识别肠道氧化还原状态即将发生的变化的新工具已经出现
可能通过测试该领域的一个重要的新兴假设来推进基础科学。
这项研究所需的技术进步使得探索诊断的氧化还原模式成为可能,并且
治疗与氧化还原失衡相关疾病的策略,为
翻译工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amin Arbabian其他文献
Amin Arbabian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amin Arbabian', 18)}}的其他基金
In vivo Wireless Sensors for Gut Redox Monitoring to Understand Host and Microbe Physiology
用于肠道氧化还原监测的体内无线传感器,以了解宿主和微生物的生理学
- 批准号:
10284863 - 财政年份:2021
- 资助金额:
$ 19.75万 - 项目类别:
A Wireless, Implantable Microdevice for Closed-Loop Drug Delivery to Prevent the Morbidity of Diabetes Therapy-Induced Hypoglycemia
一种用于闭环药物输送的无线植入式微型装置,可预防糖尿病治疗引起的低血糖的发生
- 批准号:
10090594 - 财政年份:2018
- 资助金额:
$ 19.75万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
- 批准号:
10701231 - 财政年份:2023
- 资助金额:
$ 19.75万 - 项目类别:
Mechanisms of Cardiac Injury Resolution by CX3CR1+ Macrophages
CX3CR1巨噬细胞解决心脏损伤的机制
- 批准号:
10719459 - 财政年份:2023
- 资助金额:
$ 19.75万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 19.75万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 19.75万 - 项目类别:
Investigating cerebrovascular dysfunction and cerebral atrophy in severe traumatic brain injury
严重颅脑损伤中脑血管功能障碍和脑萎缩的调查
- 批准号:
10742569 - 财政年份:2023
- 资助金额:
$ 19.75万 - 项目类别: