How do astrocytes remodel neural circuits?
星形胶质细胞如何重塑神经回路?
基本信息
- 批准号:10427827
- 负责人:
- 金额:$ 12.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAreaAstrocytesAutomobile DrivingAwardBiologicalBiological AssayBiological MetamorphosisBrainCRISPR/Cas technologyCaenorhabditis elegansCell modelCellsCellular biologyCollectionComplexDefectDevelopmentDiseaseDrosophila genusEngineeringEventExhibitsFoundationsGene Expression ProfileGenesGenomicsGoalsHomologous GeneHumanImageKnowledgeLinkMembrane ProteinsMentorsModelingMolecularMolecular GeneticsMonitorMutationNervous system structureNeuritesNeurodevelopmental DisorderNeurogliaNeuronsNeurosciencesPathway interactionsPhagocytesPhagocytosisPhasePlayPreparationProcessRNA interference screenResearchResearch PersonnelRoleSchizophreniaScientistSeriesSignal PathwaySignal TransductionSpecificitySynapsesSyndromeSystemTertiary Protein StructureTestingTrainingWorkWritingautism spectrum disordercareercareer developmentdesignflygene functionhuman diseasein vivomutantnervous system developmentnervous system disorderneural circuitneural networkneuronal circuitryneuropsychiatric disordernovelnovel markernovel strategiesreceptorrelating to nervous systemresearch and developmentresponsesuccesstooltrafficking
项目摘要
PROJECT SUMMARY
Pruning neuronal connections and eliminating superfluous neurons is required to generate optimized neuronal
circuits in the mature brain. Although it is well established that neurons and glia coordinate the refinement of
neural circuits, the molecular mechanisms underlying this process remain poorly defined. This K99/R00 proposal
will help me advance my career as I investigate the cellular mechanisms by which glia help refine neuronal
circuits during development. To generate a deep molecular understanding of neuronal remodeling, I will use the
Drosophila larval nervous system, which goes through extensive neuronal remodeling during metamorphosis. In
a preliminary screen for new model cells to study neuronal remodeling in vivo, I discovered several new markers
for cells that exhibit novel types of remodeling events. In addition, I conducted two large-scale screens to identify
new glial pathways that assist in pruning and the elimination of neuronal debris. First, using a single neuronal
lineage, I performed an in vivo RNAi screen for glial genes required for glial pruning of neurons. Second, I
transcriptionally profiled glia during pruning, identifying upregulated genes in glia, and also screened them for
regulators of neuronal remodeling. These genes will serve as a molecular entry point for me to define how glia
refine neural networks during development. During the mentored award phase, I will build a system that will allow
me to monitor the dynamic cell biological changes that occur during glial phagocytosis and will use this new
system to test novel molecules for their role remodeling. In Aim1, I will study the specific process of glial
phagocytosis using genetically encoded cellular markers and explant live imaging. These assays will serve as
the foundation for understanding how the molecules I identified play a role in glial phagocytosis. In Aim 2, I will
use this new system to understand how Tweek, a highly conserved molecule, functions during glial phagocytosis
of pruned neurons. Surprisingly, Tweek has no known protein domains or molecular function. I will use
CRISPR/Cas9 genomic engineering to create human disease-associated mutations in the fly. This will potentially
allow me to understand how mutations in Tweek's human homolog KIAA1109 cause a rare autosomal
neurological disease. Finally, in Aim 3, which will be mostly carried out in my own lab, I will use the tools I build
in this proposal to examine how a collection of newly identified phagocytic receptors drive neuronal remodeling
of synapses, neurites, and in multiple types of lineages. I outlined a series of research and career development
milestones that will be met during this award and allow me to grow as a scientist. To strengthen areas needed
for a successful research career, the aims are combined with neuroscience coursework and training in areas
such as scientific writing, mentoring, and project design. I have a committee made up of an excellent group of
scientists who are dedicated to my success and eager to assist me in my professional development. My long-
term career goal as an independent investigator is to understand the molecular mechanisms of neuronal
remodeling and how abnormalities in this process are associated with neurodevelopmental disorders.
项目概要
需要修剪神经元连接并消除多余的神经元来生成优化的神经元
成熟大脑中的回路。尽管神经元和神经胶质细胞协调神经元的细化是公认的
神经回路,这一过程背后的分子机制仍然不明确。这个K99/R00提案
当我研究神经胶质细胞帮助完善神经元的细胞机制时,将帮助我推进我的职业生涯
开发过程中的电路。为了对神经元重塑产生深入的分子理解,我将使用
果蝇幼虫神经系统,在变态过程中经历广泛的神经元重塑。在
在初步筛选新模型细胞以研究体内神经元重塑时,我发现了几个新标记
对于表现出新型重塑事件的细胞。另外,我还进行了两次大范围的筛选来识别
新的神经胶质通路有助于修剪和消除神经元碎片。首先,使用单个神经元
谱系中,我对神经元胶质修剪所需的胶质基因进行了体内 RNAi 筛选。第二,我
在修剪过程中对神经胶质细胞进行转录分析,识别神经胶质细胞中上调的基因,并筛选它们
神经元重塑的调节因子。这些基因将作为我定义神经胶质细胞如何
在开发过程中完善神经网络。在指导奖励阶段,我将建立一个系统,允许
我监测神经胶质细胞吞噬过程中发生的动态细胞生物学变化,并将使用这种新的
测试新分子角色重塑的系统。在Aim1中,我会研究胶质细胞的具体过程
使用基因编码的细胞标记和外植体实时成像进行吞噬作用。这些测定将作为
为理解我识别的分子如何在神经胶质细胞吞噬作用中发挥作用奠定了基础。在目标 2 中,我将
使用这个新系统来了解高度保守的分子 Tweek 在神经胶质细胞吞噬过程中如何发挥作用
被修剪的神经元。令人惊讶的是,Tweek 没有已知的蛋白质结构域或分子功能。我会用
CRISPR/Cas9 基因组工程在果蝇中产生与人类疾病相关的突变。这将有可能
让我了解 Tweek 的人类同源物 KIAA1109 的突变如何导致罕见的常染色体
神经系统疾病。最后,在目标 3(主要在我自己的实验室中进行)中,我将使用我构建的工具
在该提案中,研究了一组新发现的吞噬细胞受体如何驱动神经元重塑
突触、神经突以及多种类型的谱系。我概述了一系列研究和职业发展
获奖期间将实现的里程碑,使我能够成长为一名科学家。加强需要的领域
为了成功的研究生涯,这些目标与神经科学课程和领域的培训相结合
例如科学写作、指导和项目设计。我有一个由一群优秀的人组成的委员会
致力于我的成功并渴望帮助我的职业发展的科学家。我的长-
作为独立研究者的职业目标是了解神经元的分子机制
重塑以及该过程中的异常如何与神经发育障碍相关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YUNSIK KANG其他文献
YUNSIK KANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YUNSIK KANG', 18)}}的其他基金
相似国自然基金
开发区跨界合作网络的形成机理与区域效应:以三大城市群为例
- 批准号:42301183
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
秦岭生态效益转化与区域绿色发展模式
- 批准号:72349001
- 批准年份:2023
- 资助金额:200 万元
- 项目类别:专项基金项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
通过自主研发的AAV8-TBG-LOX-1基因治疗技术祛除支架区域氧化型低密度脂蛋白抑制支架内新生动脉粥样硬化研究
- 批准号:82370348
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
政府数据开放与资本跨区域流动:影响机理与经济后果
- 批准号:72302091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
DNA methylation signatures of Alzheimer's disease in aged astrocytes
老年星形胶质细胞中阿尔茨海默病的 DNA 甲基化特征
- 批准号:
10807864 - 财政年份:2023
- 资助金额:
$ 12.14万 - 项目类别:
Investigating the role of CSF production and circulation in aging and Alzheimer's disease
研究脑脊液产生和循环在衰老和阿尔茨海默病中的作用
- 批准号:
10717111 - 财政年份:2023
- 资助金额:
$ 12.14万 - 项目类别:
Deciphering Mechanisms of Astrocyte-BBB Interaction in Normal and Ischemic Stroke
解读正常和缺血性中风中星形胶质细胞-BBB相互作用的机制
- 批准号:
10585849 - 财政年份:2023
- 资助金额:
$ 12.14万 - 项目类别:
The Role of Hypothalamic Dysfunction in Accelerating Aging in Humans
下丘脑功能障碍在加速人类衰老中的作用
- 批准号:
10730129 - 财政年份:2023
- 资助金额:
$ 12.14万 - 项目类别:
Defining the autoimmune mechanisms driving human MOG antibody disease pathology
定义驱动人类 MOG 抗体疾病病理学的自身免疫机制
- 批准号:
10748070 - 财政年份:2023
- 资助金额:
$ 12.14万 - 项目类别: