Early Diagnosis of Heart Failure: A Perioperative Data-Driven Approach
心力衰竭的早期诊断:围手术期数据驱动的方法
基本信息
- 批准号:10421285
- 负责人:
- 金额:$ 17.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-05 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAnesthesia proceduresAnesthesiologyAnestheticsAssessment toolAwardBayesian AnalysisBoard CertificationCardiacCardiovascular DiseasesCaringCharacteristicsChronicClinicClinicalComputational ScienceConsumptionCoronary ArteriosclerosisDataData ScienceData SourcesDatabasesDevelopment PlansDiabetes MellitusDiagnosisDiagnosticDiscriminationDiseaseDoctor of PhilosophyEarly DiagnosisEchocardiographyElectronic Health RecordEntropyEnvironmentEvaluationGoalsGrantHealthcareHeart RateHeart failureHospitalizationHypertensionIncidenceInformation SystemsInfrastructureInternationalIntraoperative PeriodKnowledgeLaboratoriesLearningLifeMalignant NeoplasmsMeasuresMedical HistoryMedical RecordsMentorsMethodological StudiesMethodologyMethodsMichiganModelingModernizationNatural Language ProcessingOperative Surgical ProceduresOutcomeOutcomes ResearchPatient CarePatientsPerformancePerioperativePhysiciansPhysiologicalPositioning AttributePrecision Medicine InitiativePrevalenceProcessPrognosisResearchResearch PersonnelResearch TrainingResolutionResourcesRetrospective StudiesRiskRisk AssessmentRisk FactorsSensitivity and SpecificityStatistical ModelsStimulusStressTechniquesTestingThallium Myocardial Perfusion Imaging Stress TestTimeTime Series AnalysisTrainingUnited States National Institutes of HealthUniversitiesWorkadjudicatealgorithm trainingbaseblood pressure variabilitycare providerscareercareer developmentcohortcostcost effectivediagnostic algorithmdiagnostic strategydiagnostic tooldiagnostic valueeffective interventionexperiencehemodynamicsimprovedlarge datasetsmembermortalitynovelpublic health relevanceresponsesignal processingskillsstressor
项目摘要
PROJECT SUMMARY / ABSTRACT
Candidate: Dr. Michael Mathis is a cardiothoracic anesthesiologist with board certification in anesthesiology
and advanced perioperative echocardiography at the University of Michigan. Through completion of a T32
Research Training Grant, Dr. Mathis has developed expertise in perioperative outcomes research for patients
with advanced cardiovascular disease. His long-term career goal is to improve care for patients with heart
failure (HF) through harnessing perioperative electronic healthcare record (EHR) data for early diagnosis and
management. This proposal builds on Dr. Mathis's expertise, providing protected time for training in data
science methods necessary to drive forward the analytic techniques proposed for improving HF diagnosis.
Environment: The University of Michigan is the coordinating center for the Multicenter Perioperative
Outcomes Group (MPOG), an international consortium of over 50 anesthesiology and surgical departments
with perioperative information systems. Dr. Sachin Kheterpal, MD, MBA is the primary mentor for Dr. Mathis,
and is the Director for MPOG and member of the NIH Precision Medicine Initiative Advisory Panel. The
proposed research will be completed under the guidance of Dr. Kheterpal, as well as co-mentors Milo Engoren,
MD, Daniel Clauw, MD, and Kayvan Najarian, PhD. An advisory panel of experts in HF diagnosis and data
science methodologies will provide Dr. Mathis with additional guidance.
Background: HF is among the most common chronic conditions requiring hospitalization and carries high
rates of mortality. In the perioperative period, HF is a risk factor for major cardiac complications. Despite
advances in care, little progress has been made to reduce HF healthcare burden, with difficulties attributable to
a lack of inexpensive, reliable diagnostic measures. Consequently, patients with HF can go unrecognized in
early stages and do not receive treatments to reduce mortality. The perioperative period is an underutilized
opportunity to improve HF diagnosis. Beyond the wealth of preoperative data available, the intraoperative
period serves as a cardiac stress test through which hemodynamic responses to surgical and anesthetic
stimuli are recorded with high resolution. Yet, this data remains an untapped resource for HF evaluation.
Research: The goal of the proposed research is to incorporate the perioperative period as an opportunity for
early diagnosis of HF. The two specific Aims are to develop a data-driven diagnostic algorithm for HF using
preoperative EHR data (Aim 1) as well as intraoperative EHR data (Aim 2). Both aims will use automated
techniques to extract features of HF from the perioperative EHR, developed at UM and scalable to multiple
centers via the MPOG infrastructure. This work represents a paradigm shift in perioperative evaluation, using
perioperative data as a diagnostic tool rather than a risk-assessment tool. The proposed research and training
will provide Dr. Mathis with necessary data science computational experience to become an independent
physician-investigator focused on improving perioperative management strategies for patients with HF.
项目摘要 /摘要
候选人:迈克尔·马蒂斯(Michael Mathis)博士是一名心胸麻醉师,并具有麻醉学董事会认证
和密歇根大学的高级围手术期超声心动图。通过完成T32
研究培训补助金Mathis博士已为患者开发了围手术期结果的专业知识
患有晚期心血管疾病。他的长期职业目标是改善对心脏患者的护理
通过利用围手术期电子保健记录(EHR)数据进行早期诊断和
管理。该建议建立在Mathis博士的专业知识上,为数据培训提供了受保护的时间
推动提出的用于改善HF诊断的分析技术所需的科学方法。
环境:密歇根大学是多中心围手术期的协调中心
成果集团(MPOG),一个由50多个麻醉学和外科部门组成的国际财团
与围手术期信息系统。 MBA医学博士Sachin Kheterpal博士是Mathis博士的主要导师
并且是MPOG的董事,也是NIH Precision Medicine Initiative咨询小组的成员。这
拟议的研究将在Kheterpal博士的指导下以及联合会员Milo Engoren的指导下完成。
医学博士,医学博士丹尼尔·克劳(Daniel Clauw)和凯文·纳贾(Kayvan Najarian)博士。 HF诊断和数据专家的咨询小组
科学方法论将为Mathis博士提供其他指导。
背景:HF是需要住院的最常见的慢性疾病之一
死亡率。在围手术期间,HF是主要心脏并发症的危险因素。尽管
护理的进步,减轻HF医疗保健负担几乎没有取得进展,这归因于
缺乏廉价,可靠的诊断措施。因此,HF患者无法在
早期阶段,不接受治疗以降低死亡率。围手术期的未充分利用
改善HF诊断的机会。除了可用的大量术前数据外,术中
期间是心脏应激测试,通过对手术和麻醉的血液动力学反应
刺激以高分辨率记录。但是,这些数据仍然是HF评估的未开发资源。
研究:拟议的研究的目的是将围手术期纳入一个机会
早期诊断HF。这两个具体目的是使用数据驱动的HF开发数据驱动的诊断算法
术前EHR数据(AIM 1)以及术中EHR数据(AIM 2)。两个目标都将使用自动化
从围手术期EHR中提取HF特征的技术,以UM开发,可扩展到多个
通过MPOG基础架构中心。这项工作代表了围手术期评估的范式转变
围手术期数据作为诊断工具,而不是风险评估工具。拟议的研究和培训
将为Mathis博士提供必要的数据科学计算经验,以成为独立的
医师评估者的重点是改善HF患者的围手术期管理策略。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Classification of Current Procedural Terminology Codes from Electronic Health Record Data Using Machine Learning.
- DOI:10.1097/aln.0000000000003150
- 发表时间:2020-04
- 期刊:
- 影响因子:8.8
- 作者:Burns ML;Mathis MR;Vandervest J;Tan X;Lu B;Colquhoun DA;Shah N;Kheterpal S;Saager L
- 通讯作者:Saager L
Variation in propofol induction doses administered to surgical patients over age 65.
- DOI:10.1111/jgs.17139
- 发表时间:2021-08
- 期刊:
- 影响因子:6.3
- 作者:Schonberger RB;Bardia A;Dai F;Michel G;Yanez D;Curtis JP;Vaughn MT;Burg MM;Mathis M;Kheterpal S;Akhtar S;Shah N
- 通讯作者:Shah N
Sugammadex versus Neostigmine for Reversal of Neuromuscular Blockade and Postoperative Pulmonary Complications (STRONGER): A Multicenter Matched Cohort Analysis.
- DOI:10.1097/aln.0000000000003256
- 发表时间:2020-06
- 期刊:
- 影响因子:8.8
- 作者:Kheterpal S;Vaughn MT;Dubovoy TZ;Shah NJ;Bash LD;Colquhoun DA;Shanks AM;Mathis MR;Soto RG;Bardia A;Bartels K;McCormick PJ;Schonberger RB;Saager L
- 通讯作者:Saager L
Transesophageal Echocardiography for Cardiac Surgery Patients With Prior Esophagectomies: Insights From a 15-Year Institutional Experience.
对既往接受过食管切除术的心脏手术患者进行经食管超声心动图检查:来自 15 年机构经验的见解。
- DOI:10.1016/j.echo.2022.12.020
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ebadi-Tehrani,MehranM;Smith,EricD;Chang,AndrewC;Ailawadi,Gorav;Blank,Ross;Palardy,Maryse;Mathis,MichaelR
- 通讯作者:Mathis,MichaelR
Making Sense of Big Data to Improve Perioperative Care: Learning Health Systems and the Multicenter Perioperative Outcomes Group.
- DOI:10.1053/j.jvca.2019.11.012
- 发表时间:2020-03
- 期刊:
- 影响因子:2.8
- 作者:Mathis MR;Dubovoy TZ;Caldwell MD;Engoren MC
- 通讯作者:Engoren MC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Robert Mathis其他文献
Michael Robert Mathis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Robert Mathis', 18)}}的其他基金
Cardiac sURgery anesthesia Best practices to reduce Acute Kidney Injury (CURB-AKI)
心脏手术麻醉减少急性肾损伤 (CURB-AKI) 的最佳实践
- 批准号:
10656576 - 财政年份:2022
- 资助金额:
$ 17.28万 - 项目类别:
Early Diagnosis of Heart Failure: A Perioperative Data-Driven Approach
心力衰竭的早期诊断:围手术期数据驱动的方法
- 批准号:
9895469 - 财政年份:2018
- 资助金额:
$ 17.28万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
- 批准号:
10724048 - 财政年份:2023
- 资助金额:
$ 17.28万 - 项目类别:
A mechanistic understanding of treatment-related outcomes of sleep disordered breathing using functional near infrared spectroscopy
使用功能性近红外光谱从机制上理解睡眠呼吸障碍的治疗相关结果
- 批准号:
10565985 - 财政年份:2023
- 资助金额:
$ 17.28万 - 项目类别:
A multi-sensor catheter for diagnosing obstructive sleep apnea
用于诊断阻塞性睡眠呼吸暂停的多传感器导管
- 批准号:
10696658 - 财政年份:2023
- 资助金额:
$ 17.28万 - 项目类别:
Predicting Postoperative Acute Kidney Injury through Integration of Genetics and Electronic Health Records
通过整合遗传学和电子健康记录来预测术后急性肾损伤
- 批准号:
10689663 - 财政年份:2022
- 资助金额:
$ 17.28万 - 项目类别:
Predicting Postoperative Acute Kidney Injury through Integration of Genetics and Electronic Health Records
通过整合遗传学和电子健康记录来预测术后急性肾损伤
- 批准号:
10349621 - 财政年份:2022
- 资助金额:
$ 17.28万 - 项目类别: