Acoustofluidic Separation of Placental Nanovesicle Subpopulations in Obstetrical Diseases
产科疾病胎盘纳米囊泡亚群的声流分离
基本信息
- 批准号:10418609
- 负责人:
- 金额:$ 51.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-07 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ModelAntiviral ResponseApoptoticBiologicalBiological ProcessBiologyBloodBlood CirculationBlood TestsBlood VesselsBullaCell Culture TechniquesCellsClinicalCommunicationCulture MediaDataDevicesDiagnosticDimensionsDiscipline of obstetricsDiseaseFetal DevelopmentFetal Growth RetardationField Flow FractionationFunctional disorderFundingGenomicsGleanGrantGrowth FactorGrowth and Development functionHealthHealth StatusHomeostasisHormonesHumanImageInheritedInjuryInvestigationLipoproteinsLocationMLLT2 geneMagnetic Resonance ImagingManuscriptsMaternal-Fetal ExchangeMedicineMetabolicMicroRNAsModificationMolecularNational Institute of Child Health and Human DevelopmentNaturePathologicPathway interactionsPhysiologicalPlacentaPlacenta DiseasesPlacental BiologyPlasmaPopulationPositioning AttributePostpartum PeriodPre-EclampsiaPregnancyProductionProteinsProteomeProteomicsRNAReportingResearchResearch PersonnelResolutionRoleSignal TransductionSourceSubgroupSurfaceSystemTechnologyTherapeuticTimeTissuesUltrasonographyUterusVesicleWomanbioinformatics toolbiomaterial compatibilitycell typeclinical careclinically relevantdata complexitydesigndifferential expressionepigenomicsexosomeextracellular vesiclesfetalfirst responderhuman diseaseimprovedin vivoinnovationinsightliquid biopsymachine learning pipelinemicrovesiclesmolecular diagnosticsnanosizednanovesiclenew technologynoninvasive diagnosisnovelperipheral bloodpregnancy healthresponsetooltraittranscriptometranscriptomicstrophoblastvesicular release
项目摘要
The placenta is essential for fetal development and growth, maternal homeostasis, and broadly, pregnancy health. Yet, our ability to non-invasively probe placental health during human pregnancy is hampered by its deep intrauterine location and its highly vascular composition, rendering the placenta largely inaccessibly for safe and dynamic investigation. Whereas placental research has been advanced by cell culture, ex vivo systems, animal models, and postpartum analyses, these indirect approaches provide ex post facto information about placental health. Placental imaging has revolutionized the field of placental medicine, but resolution at the molecular, cellular, or metabolic level remains limited. To address these challenges, we and others have focused on the release of extracellular vesicles (EVs) from placental trophoblasts, which, in humans, are directly bathed in maternal blood. We focused on exosomes (now termed small EVs or sEVs), microvesicles, and apoptotic blebs, which are continuously and abundantly released from trophoblasts into the maternal circulation and are accessible throughout pregnancy by peripheral blood tests. Among these EVs, we focus mainly on placental sEVs, which harbor messages that are seldom expressed by any other cell types and execute unique placental biological functions, such as an antiviral response. While informative, recent data indicate that sEVs are not a uniform population of vesicles, but comprise several subgroups, defined as large sEVs, small sEVs, and exomeres. In addition to their size, these sEV subtypes are characterized by distinctive cargo. Although the recent discovery of sEV subpopulations has excited researchers due to their potential to revolutionize the field of non-invasive diagnostics, sEV subpopulations have yet to be utilized in clinical settings. This is largely due to the difficulties associated with separation and isolation the nano-sized sEV subpopulations. Our group has now developed advanced acoustofluidic technologies designed to effectively, reproducibly, and rapidly isolate sEVs from blood. We show that we can separate placental sEVs into their specific subpopulations, which has not been previously accomplished. Our proposed investigation therefore focuses on the production of human placental sEV subpopulations, along with their RNA and proteome cargo. We posit that, by profiling these analytes from sEV subpopulations, we can illuminate a unique landscape of bioactive molecules that are relevant to placental health. To reduce data complexity, we propose a machine learning pipeline that will be used to probe the sub-sEV spectra during normal and pathological pregnancies. Further, we will improve our ability to purify sEV subpopulations from lipoproteins, and generate a single, integrated device that can reliably separate vesicles in real time across human gestation. We believe that our automated acoustofluidic approach to separating sEV subpopulations in a high-yield, biocompatible manner is critical to unlocking the clinical utility of sEVs. Insights gained from our investigation will improve non-invasive diagnostics during pregnancy and may uncover new targets for personalized placental therapeutics.
胎盘对于胎儿发育和生长,母体稳态以及广泛的怀孕健康至关重要。然而,我们在妊娠期间非侵入性探测胎盘健康的能力受到其深层宫内的位置和高度血管组成的阻碍,从而使胎盘在很大程度上不可见以进行安全和动态的研究。尽管胎盘研究是通过细胞培养,离体系统,动物模型和产后分析进行的,但这些间接方法提供了有关胎盘健康的事后信息。胎盘成像彻底改变了胎盘医学领域,但是分子,细胞或代谢水平的分辨率仍然有限。为了应对这些挑战,我们和其他人专注于胎盘滋养细胞中细胞外囊泡(EV)的释放,在人类中,这些囊泡直接沐浴在孕妇血液中。我们专注于外泌体(现在称为小型电动汽车或SEV),微泡和凋亡泡沫,它们从滋养细胞中不断且丰富地释放到母体循环中,并通过外周血液测试在整个怀孕期间可以进入。在这些电动汽车中,我们主要关注胎盘SEV,这些胎盘塞有很少由任何其他细胞类型表示并执行独特的胎盘生物学功能,例如抗病毒反应。虽然信息丰富,但最近的数据表明,SEV不是统一的囊泡群,而是组成几个亚组,定义为大的SEV,小SEV和外域。除了它们的大小外,这些SEV亚型还具有独特的货物。尽管最近发现SEV亚群的发现使研究人员兴奋,因为他们有可能彻底改变了非侵入性诊断领域,但SEV亚群尚未在临床环境中使用。这在很大程度上是由于与分离和分离纳米大小的SEV亚群有关的困难。现在,我们的小组开发了高级流动性技术,旨在有效,可重复和快速与血液分离。我们表明,我们可以将胎盘塞维斯分离为他们的特定亚群,而这些亚群以前尚未完成。因此,我们提出的研究集中在人胎盘SEV亚群以及其RNA和蛋白质组货物上的产生。我们认为,通过对SEV亚群的这些分析物进行分析,我们可以阐明与胎盘健康相关的生物活性分子的独特景观。为了降低数据的复杂性,我们提出了一条机器学习管道,该管道将在正常和病理妊娠期间用于探测亚sev光谱。此外,我们将提高我们从脂蛋白中纯化SEV亚群的能力,并生成一个单一的集成装置,可以在人妊娠之间实时可靠地分离囊泡。我们认为,我们以高收益,生物相容性方式分离SEV亚群体的自动化的浮雕方法对于解锁SEV的临床实用性至关重要。从我们的调查中获得的见解将改善怀孕期间的非侵入性诊断,并可能发现针对个性化胎盘疗法的新目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tony Jun Huang其他文献
Tony Jun Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tony Jun Huang', 18)}}的其他基金
Automated High-purity Exosome isolation-based AD diagnostics system (AHEADx)
基于自动化高纯度外泌体分离的 AD 诊断系统 (AHEADx)
- 批准号:
10738697 - 财政年份:2023
- 资助金额:
$ 51.26万 - 项目类别:
Acoustofluidic Separation of Placental Nanovesicle Subpopulations in Obstetrical Diseases
产科疾病胎盘纳米囊泡亚群的声流分离
- 批准号:
10625490 - 财政年份:2021
- 资助金额:
$ 51.26万 - 项目类别:
Development of a digital acoustofluidic system for automating liquid handling in biomedical research
开发用于生物医学研究中液体处理自动化的数字声流系统
- 批准号:
10405571 - 财政年份:2021
- 资助金额:
$ 51.26万 - 项目类别:
Development of a digital acoustofluidic system for automating liquid handling in biomedical research
开发用于生物医学研究中液体处理自动化的数字声流系统
- 批准号:
10175836 - 财政年份:2021
- 资助金额:
$ 51.26万 - 项目类别:
Development of a digital acoustofluidic system for automating liquid handling in biomedical research
开发用于生物医学研究中液体处理自动化的数字声流系统
- 批准号:
10689706 - 财政年份:2021
- 资助金额:
$ 51.26万 - 项目类别:
Development of a digital acoustofluidic system for automating liquid handling in biomedical research
开发用于生物医学研究中液体处理自动化的数字声流系统
- 批准号:
10795366 - 财政年份:2021
- 资助金额:
$ 51.26万 - 项目类别:
AFS/SERS Saliva-based SARS-CoV-2 Earliest Infection and Antibodies Detection
AFS/SERS 基于唾液的 SARS-CoV-2 最早感染和抗体检测
- 批准号:
10320991 - 财政年份:2020
- 资助金额:
$ 51.26万 - 项目类别:
AFS/SERS Saliva-based SARS-CoV-2 Earliest Infection and Antibodies Detection
AFS/SERS 基于唾液的 SARS-CoV-2 最早感染和抗体检测
- 批准号:
10266399 - 财政年份:2020
- 资助金额:
$ 51.26万 - 项目类别:
Enabling Efficient, Fast, Biocompatible Exosome Separation via Acoustofluidics
通过声流控技术实现高效、快速、生物相容性的外泌体分离
- 批准号:
10171868 - 财政年份:2019
- 资助金额:
$ 51.26万 - 项目类别:
Enabling Efficient, Fast, Biocompatible Exosome Separation via Acoustofluidics
通过声流控技术实现高效、快速、生物相容性的外泌体分离
- 批准号:
10456734 - 财政年份:2019
- 资助金额:
$ 51.26万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Liver Targeting Dihydroquinolizinone (DHQ) Molecules as Hepatitis B Virus Antivirals with Reduced Toxicity
肝脏靶向二氢喹嗪酮 (DHQ) 分子作为乙型肝炎病毒抗病毒药物,毒性降低
- 批准号:
10593566 - 财政年份:2023
- 资助金额:
$ 51.26万 - 项目类别:
mRNA-encoded Cas13 as a pan-respiratory antiviral
mRNA 编码的 Cas13 作为泛呼吸道抗病毒药物
- 批准号:
10637171 - 财政年份:2023
- 资助金额:
$ 51.26万 - 项目类别:
Elucidating the role of type I interferon signaling and macrophage-derived inflammation in the juvenile host with viral pneumonia
阐明 I 型干扰素信号传导和巨噬细胞衍生炎症在病毒性肺炎幼年宿主中的作用
- 批准号:
10651426 - 财政年份:2023
- 资助金额:
$ 51.26万 - 项目类别:
Natural model for evaluating within- and cross-species virus transmission
评估物种内和跨物种病毒传播的自然模型
- 批准号:
10735974 - 财政年份:2023
- 资助金额:
$ 51.26万 - 项目类别:
Employing viruses to unravel the functional significance of the m5C epitranscriptome
利用病毒揭示 m5C 表观转录组的功能意义
- 批准号:
10638533 - 财政年份:2023
- 资助金额:
$ 51.26万 - 项目类别: