Use of Predictive Analytics to Quantify Neonatal Hypothermia Burden After Cardiac Surgery

使用预测分析来量化心脏手术后新生儿体温过低的负担

基本信息

项目摘要

ABSTRACT Neonates (infants ≤ 28 days), especially those with congenital heart disease (CHD), are among the most vulnerable populations cared for by critical care nurses. Approximately, two out of three CHD neonates experience unintentional hypothermia after cardiopulmonary bypass (CPB). Unintentional hypothermia impairs cellular function, which can be linked to poor outcomes frequently reported in this population. To date, there are no studies examining the association between the burden of unintentional hypothermia and clinical outcomes in neonates with CHD. This knowledge would render future opportunities to improve nursing care and prevent avoidable safety events in these vulnerable neonates. To address this gap, we propose to use retrospective data from CardioAccess (database local to the Children’s Hospital of Philadelphia [CHOP]), which includes one of the largest multicenter repositories of neonatal cardiac surgery data available to date (Pediatric Cardiac Critical Care Consortium [PC4]), as well as, the electronic health record. Using data from at least 432 neonates who have undergone CPB between 2015 and 2019, we will quantify the time course of hourly temperature trajectories within the initial 24–48 hours after CPB and evaluate their relation to key clinical outcomes. We will specifically study the temporal trends of unintentional hypothermia burden (temperature depth and duration), which challenges current practice, where care is based on maintaining a single, preselected temperature threshold that is driven by consensus, rather than evidence. Single threshold values are not dynamic representations of the complexity that makes up temperature. A more robust output, such as an accumulative hypothermia burden index, is needed to assist clinicians with interpretation of this dynamic indicator of overall health. Our Specific Aims are: 1) Identify distinct temporal temperature patterns in CHD neonates after CPB using both: a multilevel model for intensive longitudinal data with group-based trajectory modeling; and an unsupervised machine learning technique using principal component analysis followed by k- means clustering of longitudinal data. 2) Determine the relationship between hypothermia burden subgroups / clusters and important clinical outcomes in this population. Our team has a demonstrated expertise in building clinically relevant and physiologically plausible markers of adverse outcomes in critically ill patients. This study aligns with the NINR’s priorities of promoting wellness and preventing illness across the lifespan, as well as, using recent advances in precision medicine. The research conducted under this award will take place at the University of Pittsburgh School of Nursing, a research-intensive institution (data analysis), and CHOP (data provision). The personalized training plan outlined in this application, supports the applicant’s career and academic development goals to become an independent nurse researcher.
抽象的 新生儿(≤28天的婴儿),尤其是先天性心脏病(CHD)的新生儿,是最大的 重症监护护士照顾的脆弱人群。大约,三个冠心新生儿中有两个 心肺旁路(CPB)后经历无意的体温过低。无意的体温过低会损害 细胞功能,这可以与该人群经常报告的不良结局有关。迄今为止,那里 没有研究对无意体温和临床的燃烧之间的关联 与CHD的新生儿的结果。这些知识将提供未来的机会来改善护士护理 并防止这些脆弱的新生儿中可避免的安全事件。为了解决这个差距,我们建议使用 来自CardioCess的回顾性数据(数据库本地到费城儿童医院[CHOP]), 其中包括迄今为止可用的新生儿心脏手术数据的最大的多中心存储库之一 (儿科心脏重症监护联盟[PC4])以及电子健康记录。使用来自AT的数据 在2015年至2019年期间经历了CPB的最少432名新生儿,我们将量化的时间课程 CPB后最初24-48小时内的小时温度轨迹,并评估其与关键临床的关系 结果。我们将专门研究无意间体温过低的临时趋势(温度) 深度和持续时间),挑战当前的实践,在这里,护理是基于维护单个的, 由共识而不是证据驱动的预选温度阈值。单个阈值 不是组成温度的复杂性的动态表示。一个更强大的输出,例如 需要累积的低温负担指数,以帮助临床医生解释这种动态 整体健康的指标。我们的具体目的是:1)确定CHD中不同的临时温度模式 CPB之后使用两者的新生儿:用于基于组轨迹的密集纵向数据的多级模型 造型;以及使用主成分分析的无监督机器学习技术,然后是K- 表示纵向数据的聚类。 2)确定体温过低亚组 / 集群和该人群中重要的临床结果。我们的团队在建设方面具有展示的专业知识 重症患者不良后果的临床相关且身体上有可能的标记。这项研究 符合忍者促进健康和预防整个寿命的优先事项,以及 利用精密医学的最新进展。根据该奖项进行的研究将在 匹兹堡大学护理学院,研究密集型机构(数据分析)和CHOP(数据 条款)。本申请中概述的个性化培训计划支持申请人的职业和 成为独立护士研究人员的学术发展目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Stephanie M Helman的其他基金

Use of Predictive Analytics to Quantify Neonatal Hypothermia Burden After Cardiac Surgery
使用预测分析来量化心脏手术后新生儿体温过低的负担
  • 批准号:
    10650743
    10650743
  • 财政年份:
    2021
  • 资助金额:
    $ 4.93万
    $ 4.93万
  • 项目类别:

相似国自然基金

TMEM30a在致心律不齐性右心室心肌病中的作用及机制研究
  • 批准号:
    82100367
  • 批准年份:
    2021
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
人参抗心律不齐活性成分及其构效关系的研究*3
  • 批准号:
    28970070
  • 批准年份:
    1989
  • 资助金额:
    2.5 万元
  • 项目类别:
    面上项目

相似海外基金

Differences in Women and Men with Atrial Fibrillation
女性和男性房颤患者的差异
  • 批准号:
    10822952
    10822952
  • 财政年份:
    2023
  • 资助金额:
    $ 4.93万
    $ 4.93万
  • 项目类别:
Cardiac ryanodine receptor and oxidative stress
心脏兰尼碱受体与氧化应激
  • 批准号:
    10833359
    10833359
  • 财政年份:
    2023
  • 资助金额:
    $ 4.93万
    $ 4.93万
  • 项目类别:
A Physiological Approach to Examining the Role of Racial Coping on Mental Health Among Black Adolescents
用生理学方法检验种族应对对黑人青少年心理健康的作用
  • 批准号:
    10751736
    10751736
  • 财政年份:
    2023
  • 资助金额:
    $ 4.93万
    $ 4.93万
  • 项目类别:
CardioPulmonary Vascular Biology COBRE
心肺血管生物学 COBRE
  • 批准号:
    10854140
    10854140
  • 财政年份:
    2023
  • 资助金额:
    $ 4.93万
    $ 4.93万
  • 项目类别:
Mentored research in the intersection of kidney and cardiovascular disease
肾脏和心血管疾病交叉领域的指导研究
  • 批准号:
    10795588
    10795588
  • 财政年份:
    2023
  • 资助金额:
    $ 4.93万
    $ 4.93万
  • 项目类别: