Antibody Drug Conjugate (ADC) Workbench
抗体药物偶联物 (ADC) 工作台
基本信息
- 批准号:10413117
- 负责人:
- 金额:$ 54.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAntibodiesAntibody-drug conjugatesArchitectureAreaBenchmarkingBiologicalBiological AssayBiological ProductsBiological Response Modifier TherapyBispecific Monoclonal AntibodiesBreast Cancer PatientCD22 geneCharacteristicsChemistryClinicalClinical DataClinical PharmacologyClinical TrialsClinical Trials DesignComplexComputer ModelsCytotoxic agentDataData SetDatabasesDevelopmentDoseDose-LimitingDrug DesignDrug KineticsERBB2 geneEquilibriumEvaluationExperimental ModelsFDA approvedFailureGemtuzumab OzogamicinHematologyHigh Performance ComputingHumanIndividualKnowledgeLiteratureMacaca fascicularisMalignant neoplasm of lungMaximum Tolerated DoseMeasuresMedicalModelingMolecularMonoclonal AntibodiesMusNatureNeutropeniaOncologyPatient SelectionPatientsPharmaceutical PreparationsPharmacodynamicsPharmacologyPhaseProcessProgression-Free SurvivalsPropertyPublishingReactionRegimenReportingRiskScheduleSideSpecificitySystemTherapeuticTherapeutic IndexThrombocytopeniaTimeTissuesToxic effectTranslatingTrastuzumabVariantVertebral columnWorkXenograft procedureanti-cancer therapeuticbasecancer typecandidate selectionclinical developmentclinical efficacycloud basedcomputational platformcytotoxicdesigndrug discoverydrug distributionfirst-in-humanimprovedin silicoin vitro activityin vivoinnovationlarge cell Diffuse non-Hodgkin&aposs lymphomalead candidatemalignant stomach neoplasmmodel buildingmultiple data typesneoplastic cellnoveloutcome predictionpatient populationpatient responsepre-clinicalprogramsprototypereceptorresearch clinical testingresponsescreeningsimulationsmall moleculesuccesstooltumortumor growthvirtual patient
项目摘要
Project Summary/Abstract
Antibody-Drug Conjugates (ADCs) are an exciting class of targeted anti-cancer therapeutics, combining the selectivity
and specificity of biologics (monoclonal antibodies) with the potent cytotoxic activity of small molecule payloads. While
proven to yield clinical benefit in different cancer types (5 ADCs have been approved by the FDA), many molecules fail
in late stage clinical testing. The fine balance of anti-tumor activity vs. toxicity ultimately originates from the ADC
‘design space’: the choices of target, backbone (usually monoclonal antibodies (mAb)), linker chemistry, cytotoxic
payload, and drug-to-antibody ratio (DAR) make for a vast number of possible combinations that cannot be fully explored
experimentally. ADCs are thus currently designed empirically, often based on variations of existing ADCs, supported by
very limited and highly-imperfect pre-clinical assays, and clinical dosing schedules selected from sparse human toxicity
data.
Mechanism-based computational models that could synthesize the different preclinical mechanistic data to predict human
efficacy and toxicity, and anticipate the therapeutic index (TI) of novel ADCs in silico would be highly valuable to guide
both molecule design during early development, and clinical decisions. Specifically, if target selection and candidate
screening could be performed computationally, better ADCs would be taken into clinical testing. Similarly, if the effect of
alternate dosing schedules and patient populations could be evaluated pre-emptively, molecules that enter clinical testing
would have a higher chance of success, trials would be accelerated, and clinical benefit would be improved. We propose
developing a Quantitative Systems Pharmacology (QSP)-based platform ADC model that could do so - the ADC
Workbench.
By integrating the disparate body of data and biological knowledge available for successful ADCs into one platform
model, the ADC Workbench will enable systematic candidate evaluation based on simulated clinical activity and toxicity
(i.e., the TI). Leads with a poor chance of success will be weeded out early, and those with better prospects taken forward.
The ADC Workbench will allow dosing schedules to be evaluated in large numbers of diverse virtual patient populations,
providing a rational approach to clinical trial designs that maximize TI.
The platform will be constructed in a modular way so that innovative new ADC molecules (e.g. with novel mAB
backbones, linkers or payloads) can be incorporated as data becomes available. The ADC Workbench tool will be
preloaded with several parameter sets for approved ADC molecules and their individual components (mAB, linker,
payload), to allow for rapid in silico prototyping and benchmarking of potential new candidates. Continuous
improvements to the built-in parameter database will be made as more data of clinical success and failure becomes
available. Combining the model- and parameter database with the powerful high performance computing (HPC) analysis
tools of Applied BioMath’s cloud based simulation engine will allow for routine and timely contribution to the ADC drug
discovery process.
1 of 1
项目摘要/摘要
抗体 - 药物结合物(ADC)是一类令人兴奋的靶向抗癌治疗,结合了选择性
生物制剂的特异性(单克隆抗体)具有小分子有效载荷潜在的细胞毒性活性。尽管
被证明可以在不同类型的癌症类型中产生临床益处(FDA已批准了5种ADC),许多分子失败了
在晚期临床测试中。抗肿瘤活性与毒性的良好平衡最终源自ADC
“设计空间”:目标,骨干(通常是单克隆抗体(MAB)),接头化学,细胞毒性的选择
有效载荷和药物与抗体比(DAR)使许多可能无法完全探索的可能组合
实验。因此
非常有限且高度的临床前测定,以及从稀疏人类毒性中选择的临床给药时间表
数据。
基于机理的计算模型,可以合成不同的临床前机械数据以预测人类
疗效和毒性,并预测硅中新型ADC的治疗指数(TI)对于指导很有价值
早期开发期间的分子设计和临床决策。具体而言,如果目标选择和候选人
可以通过计算进行筛选,将更好的ADC进行临床测试。同样,如果效果
可以预先评估替代的给药时间表和患者人群,进入临床测试的分子
成功的机会将有更高的机会,试验将得到加速,并将提高临床益处。我们建议
开发基于定量系统药理学(QSP)的平台ADC模型 - 可以这样做-ADC
工作台。
通过将可用于成功ADC的数据和生物学知识的不同体系集成到一个平台中
模型,ADC工作台将基于模拟临床活动和毒性进行系统的候选评估
(即Ti)。领先者的成功机会很差,将很早就淘汰,而那些前景更好的领导者会逐渐淘汰。
ADC Workbench将允许大量潜水员虚拟患者人群评估给药时间表,
为临床试验设计提供了最大化Ti的合理方法。
该平台将以模块化的方式构建,以便创新的新ADC分子(例如,具有新颖的mAb
可以在数据可用时合并骨干,链接器或有效负载)。 ADC Workbench工具将是
预加载了几个参数集用于批准的ADC分子及其各个组件(mab,linker,
有效载荷),以快速进行硅原型制作和潜在新候选者的基准测试。连续的
随着更多的临床成功数据和失败变为,将对内置参数数据库进行改进
可用的。将模型和参数数据库与强大的高性能计算(HPC)分析相结合
Applied Biomath的基于云的仿真引擎的工具将允许例行和及时贡献ADC药物
发现过程。
1 of 1
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alison Mary Betts其他文献
Alison Mary Betts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alison Mary Betts', 18)}}的其他基金
相似国自然基金
人源化小鼠筛选猴痘抗体及机制研究
- 批准号:82373778
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
抗HTNV抗体mRNA修饰MSC在肾综合征出血热治疗中的作用研究
- 批准号:82302487
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人和小鼠中新冠病毒RBD的免疫原性表位及其互作抗体的表征和结构组学规律的比较研究
- 批准号:32371262
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
靶向肿瘤内T细胞的双特异性抗体治疗策略研究
- 批准号:82371845
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
靶向DLL3和γδ T细胞的双特异抗体对小细胞肺癌的免疫治疗活性研究
- 批准号:32300783
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of antibody drug conjugates as pan-filo antivirals
开发作为泛型抗病毒药物的抗体药物偶联物
- 批准号:
10759731 - 财政年份:2023
- 资助金额:
$ 54.7万 - 项目类别:
Alternatively spliced cell surface proteins as drivers of leukemogenesis and targets for immunotherapy
选择性剪接的细胞表面蛋白作为白血病发生的驱动因素和免疫治疗的靶点
- 批准号:
10648346 - 财政年份:2023
- 资助金额:
$ 54.7万 - 项目类别:
Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
- 批准号:
10678074 - 财政年份:2023
- 资助金额:
$ 54.7万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 54.7万 - 项目类别:
Pharmacokinetic / Pharmacodynamic Optimization of ADC Therapy for Acute Myeloid Leukemia
急性髓系白血病 ADC 治疗的药代动力学/药效学优化
- 批准号:
10561230 - 财政年份:2023
- 资助金额:
$ 54.7万 - 项目类别: