Antibody Drug Conjugate (ADC) Workbench
抗体药物偶联物 (ADC) 工作台
基本信息
- 批准号:10413117
- 负责人:
- 金额:$ 54.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAntibodiesAntibody-drug conjugatesArchitectureAreaBenchmarkingBiologicalBiological AssayBiological ProductsBiological Response Modifier TherapyBispecific Monoclonal AntibodiesBreast Cancer PatientCD22 geneCharacteristicsChemistryClinicalClinical DataClinical PharmacologyClinical TrialsClinical Trials DesignComplexComputer ModelsCytotoxic agentDataData SetDatabasesDevelopmentDoseDose-LimitingDrug DesignDrug KineticsERBB2 geneEquilibriumEvaluationExperimental ModelsFDA approvedFailureGemtuzumab OzogamicinHematologyHigh Performance ComputingHumanIndividualKnowledgeLiteratureMacaca fascicularisMalignant neoplasm of lungMaximum Tolerated DoseMeasuresMedicalModelingMolecularMonoclonal AntibodiesMusNatureNeutropeniaOncologyPatient SelectionPatientsPharmaceutical PreparationsPharmacodynamicsPharmacologyPhaseProcessProgression-Free SurvivalsPropertyPublishingReactionRegimenReportingRiskScheduleSideSpecificitySystemTherapeuticTherapeutic IndexThrombocytopeniaTimeTissuesToxic effectTranslatingTrastuzumabVariantVertebral columnWorkXenograft procedureanti-cancer therapeuticbasecancer typecandidate selectionclinical developmentclinical efficacycloud basedcomputational platformcytotoxicdesigndrug discoverydrug distributionfirst-in-humanimprovedin silicoin vitro activityin vivoinnovationlarge cell Diffuse non-Hodgkin&aposs lymphomalead candidatemalignant stomach neoplasmmodel buildingmultiple data typesneoplastic cellnoveloutcome predictionpatient populationpatient responsepre-clinicalprogramsprototypereceptorresearch clinical testingresponsescreeningsimulationsmall moleculesuccesstooltumortumor growthvirtual patient
项目摘要
Project Summary/Abstract
Antibody-Drug Conjugates (ADCs) are an exciting class of targeted anti-cancer therapeutics, combining the selectivity
and specificity of biologics (monoclonal antibodies) with the potent cytotoxic activity of small molecule payloads. While
proven to yield clinical benefit in different cancer types (5 ADCs have been approved by the FDA), many molecules fail
in late stage clinical testing. The fine balance of anti-tumor activity vs. toxicity ultimately originates from the ADC
‘design space’: the choices of target, backbone (usually monoclonal antibodies (mAb)), linker chemistry, cytotoxic
payload, and drug-to-antibody ratio (DAR) make for a vast number of possible combinations that cannot be fully explored
experimentally. ADCs are thus currently designed empirically, often based on variations of existing ADCs, supported by
very limited and highly-imperfect pre-clinical assays, and clinical dosing schedules selected from sparse human toxicity
data.
Mechanism-based computational models that could synthesize the different preclinical mechanistic data to predict human
efficacy and toxicity, and anticipate the therapeutic index (TI) of novel ADCs in silico would be highly valuable to guide
both molecule design during early development, and clinical decisions. Specifically, if target selection and candidate
screening could be performed computationally, better ADCs would be taken into clinical testing. Similarly, if the effect of
alternate dosing schedules and patient populations could be evaluated pre-emptively, molecules that enter clinical testing
would have a higher chance of success, trials would be accelerated, and clinical benefit would be improved. We propose
developing a Quantitative Systems Pharmacology (QSP)-based platform ADC model that could do so - the ADC
Workbench.
By integrating the disparate body of data and biological knowledge available for successful ADCs into one platform
model, the ADC Workbench will enable systematic candidate evaluation based on simulated clinical activity and toxicity
(i.e., the TI). Leads with a poor chance of success will be weeded out early, and those with better prospects taken forward.
The ADC Workbench will allow dosing schedules to be evaluated in large numbers of diverse virtual patient populations,
providing a rational approach to clinical trial designs that maximize TI.
The platform will be constructed in a modular way so that innovative new ADC molecules (e.g. with novel mAB
backbones, linkers or payloads) can be incorporated as data becomes available. The ADC Workbench tool will be
preloaded with several parameter sets for approved ADC molecules and their individual components (mAB, linker,
payload), to allow for rapid in silico prototyping and benchmarking of potential new candidates. Continuous
improvements to the built-in parameter database will be made as more data of clinical success and failure becomes
available. Combining the model- and parameter database with the powerful high performance computing (HPC) analysis
tools of Applied BioMath’s cloud based simulation engine will allow for routine and timely contribution to the ADC drug
discovery process.
1 of 1
项目概要/摘要
抗体药物偶联物 (ADC) 是一类令人兴奋的靶向抗癌疗法,结合了选择性
以及具有小分子有效负载的有效细胞毒活性的生物制剂(单克隆抗体)的特异性。
事实证明,在不同的癌症类型中可产生临床益处(FDA 已批准 5 种 ADC),但许多分子失败了
在后期临床测试中,抗肿瘤活性与毒性的精细平衡最终源于 ADC。
“设计空间”:靶标、骨架(通常是单克隆抗体(mAb))、连接化学、细胞毒性的选择
有效负载和药物抗体比 (DAR) 产生了大量无法充分探索的可能组合
因此,目前 ADC 是根据经验设计的,通常基于现有 ADC 的变体,并得到了支持。
非常有限且高度不完善的临床前测定,以及从稀疏的人体毒性中选择的临床给药方案
数据。
基于机制的计算模型,可以综合不同的临床前机械数据来预测人类
功效和毒性,并在计算机中预测新型 ADC 的治疗指数 (TI) 对于指导非常有价值
早期开发期间的分子设计和临床决策,具体来说,是靶点选择和候选者。
筛选可以通过计算进行,更好的 ADC 将被纳入临床测试,类似地,如果效果良好。
可以预先评估替代给药方案和患者群体,进入临床测试的分子
我们建议,成功的机会会更高,试验会加速,临床效益也会提高。
开发一个基于定量系统药理学 (QSP) 的平台 ADC 模型,可以做到这一点 - ADC
工作台。
将成功的 ADC 可用的不同数据和生物知识集成到一个平台中
模型中,ADC 工作台将能够根据模拟的临床活性和毒性对候选药物进行系统评估
(即 TI)。成功机会较小的潜在客户将被尽早淘汰,而那些前景较好的潜在客户将被继续推进。
ADC 工作台将允许在大量不同的虚拟患者群体中评估给药方案,
为最大化 TI 的临床试验设计提供合理的方法。
该平台将以模块化方式构建,以便创新的新型 ADC 分子(例如新型 mAB)
当数据可用时,可以将 ADC 工作台工具纳入其中。
预加载了经批准的 ADC 分子及其各个组件(mAB、连接子、
有效负载),以便对潜在的新候选者进行快速的计算机原型设计和基准测试。
随着更多临床成功和失败的数据的出现,将对内置参数数据库进行改进
将模型和参数数据库与强大的高性能计算 (HPC) 分析相结合。
Applied BioMath 基于云的模拟引擎工具将允许对 ADC 药物进行常规和及时的贡献
发现过程。
1 中 1
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alison Mary Betts其他文献
Alison Mary Betts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alison Mary Betts', 18)}}的其他基金
相似国自然基金
基于配体导向催化剂的定点偶联新方法实现定点抗体药物偶联物研究
- 批准号:82204183
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
识别癌细胞表面MUC1的新型人源化抗体-药物偶联物靶向治疗恶性难治性肿瘤的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
核酸适体介导Fc段定点修饰的抗体药物偶联物及其白血病治疗研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于抗体的新型抗原靶向肽及其药物偶联物的构建、抗肿瘤活性及作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
肾小球内皮细胞线粒体靶向mAb-TK-SS31抗体药物偶联物对糖尿病肾病的治疗作用与机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
- 批准号:
10678074 - 财政年份:2023
- 资助金额:
$ 54.7万 - 项目类别:
Alternatively spliced cell surface proteins as drivers of leukemogenesis and targets for immunotherapy
选择性剪接的细胞表面蛋白作为白血病发生的驱动因素和免疫治疗的靶点
- 批准号:
10648346 - 财政年份:2023
- 资助金额:
$ 54.7万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 54.7万 - 项目类别:
Development of antibody drug conjugates as pan-filo antivirals
开发作为泛型抗病毒药物的抗体药物偶联物
- 批准号:
10759731 - 财政年份:2023
- 资助金额:
$ 54.7万 - 项目类别:
Pharmacokinetic / Pharmacodynamic Optimization of ADC Therapy for Acute Myeloid Leukemia
急性髓系白血病 ADC 治疗的药代动力学/药效学优化
- 批准号:
10561230 - 财政年份:2023
- 资助金额:
$ 54.7万 - 项目类别: