Inconspicuous Daily Monitoring to Reduce Heart Failure Hospitalizations
不显眼的日常监测可减少心力衰竭住院率
基本信息
- 批准号:10413910
- 负责人:
- 金额:$ 59.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-18 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdmission activityAdverse eventAmericanArchitectureAwarenessBehaviorBloodBlood PressureCardiac OutputCardiovascular DiseasesCardiovascular systemCaringCause of DeathCessation of lifeClinicalClinical DataClinical TrialsComputer softwareComputerized Medical RecordControl GroupsCustomDataData ScientistData SetDeteriorationEarly InterventionElectrocardiogramEngineeringEnsureEquilibriumGenerationsHabitsHealth PersonnelHealthcare SystemsHeart RateHeart failureHomeHospitalizationHospitalsInstructionInterdisciplinary StudyInterventionIntervention StudiesInterviewLabelLeadLearningLength of StayMachine LearningMeasurementMeasuresModelingMonitorMyocardiumPatientsPatternPharmaceutical PreparationsPhysiciansPhysiologicalPredictive ValuePreventive careProbabilityProviderQuality of lifeResearchRiskSlideSystemTechniquesTechnologyTelephoneTestingTimeTrainingUpdateVisitWeightWorkbaseclinically relevantcohortcompliance behaviorcostdata streamsdata visualizationheart rate variabilityhospitalization ratesimprovedinnovative technologiesmachine learning modelmodel developmentmultidimensional datanovelpredictive modelingprovider interventionrecurrent neural networkremote patient monitoringsuccesstrend
项目摘要
Project Summary/Abstract
In-home monitoring technologies have the potential to transform the healthcare system by enabling the
transition from reactive care to proactive and preventive care. This is especially important for cardiovascular
disease (CVD); the leading cause of death worldwide. Heart failure (HF), a type of CVD characterized by a
weakened heart muscle, impacts approximately 6.5 million Americans with over 960,000 new cases each year.
HF costs the US an estimated $30.7 billion annually and is expected to increase 127% to $69.7 billion by 2030.
With approximately 80% of the total cost associated with HF due to hospitalization, there is an opportunity to
reduce the cost of HF by lowering hospitalization rates through remote patient monitoring. Since patient
awareness of symptomology often lags deterioration, successfully tracking physiologic changes in the home is
a critical component of an early intervention strategy. Classical approaches to in-home monitoring, such as
blood pressure and weight monitoring have had limited success, with patient adherence cited as major barrier
to reducing hospitalizations.
The central hypothesis of this research is that hospitalization rates and duration of stay for heart failure patients
can be significantly reduced through inconspicuous in-home monitoring and early intervention. This research
will leverage a highly innovative technology for cardiovascular in-home daily monitoring; the fully integrated
toilet seat (FIT). The FIT seat automatically captures a comprehensive cardiovascular assessment in the
home, while ensuring long-term patient adherence. A multidisciplinary research team, comprised of engineers,
physicians, advanced practice providers (APP), data scientists, biostatisticians, designers, and software
developers, will advance an automated system that provides health care providers with early warning of patient
deterioration using the FIT system measurements captured in the home. The success of this system will be
evaluated through an in-home clinical trial of heart failure patients.
Specific Aim 1 seeks to create a learning dataset and data visualization architecture from HF patient in-home
physiologic data, perceived wellness, and adverse events. The FIT seat will be deployed for a 90-day in-home
study of 200 HF patients, with patient perceived wellness and activity captured through a custom application.
This physiologic, wellness, and activity data will be combined with adverse events from the electronic medical
record to create an integrated dataset for retrospective analysis and alert model development. In Aim 2, an
automated prediction model for early alert of all-cause hospitalizations will be created using novel machine
learning techniques. The objective of Aim 3 is to demonstrate that inconspicuous in-home monitoring and
early intervention can reduce hospitalizations in a second cohort of 200 HF patients. We hypothesize that the
integrated FIT-based alert system will reduce the burden of all-cause hospitalization and will improve the
quality of life for patients.
项目摘要/摘要
在家监测技术有可能通过启用医疗系统来改变医疗保健系统
从反应性护理过渡到主动和预防保健。这对于心血管尤其重要
疾病(CVD);全球死亡的主要原因。心力衰竭(HF),一种以A为特征的CVD
心肌减弱,每年影响约650万美国人,新病例超过960,000例。
HF估计每年损失307亿美元,预计到2030年将增加127%,至697亿美元。
由于住院的大约80%与HF相关的总成本的80%,有机会
通过远程患者监测来降低住院率,降低HF的成本。自病人以来
症状的意识经常落后于恶化,成功跟踪家庭生理变化的是
早期干预策略的关键组成部分。经典的家庭监控方法,例如
血压和体重监测的成功有限,患者依从性是主要障碍
减少住院。
这项研究的核心假设是心力衰竭患者的住院率和住院时间
通过不起眼的家庭监测和早期干预可以显着降低。这项研究
将利用一种高度创新的技术来进行家庭内部的日常监测;完全集成
厕所座椅(适合)。适合座椅会自动捕获全面的心血管评估
在家,同时确保长期的患者依从性。由工程师组成的多学科研究团队,
医师,高级实践提供者(APP),数据科学家,生物统计学家,设计师和软件
开发人员将推进一个自动化系统,该系统为医疗保健提供者提供病人的预警
使用在房屋中捕获的拟合系统测量结果恶化。该系统的成功将是
通过心力衰竭患者的家庭内临床试验进行评估。
特定目标1试图从HF患者内部创建学习数据集和数据可视化架构
生理数据,感知的健康和不良事件。合适的座椅将部署为90天的家庭
研究200例HF患者,患者通过自定义应用捕获了患者的健康和活动。
这种生理,健康和活动数据将与电子医学的不良事件结合
记录以创建一个集成数据集,以进行回顾性分析和警报模型开发。在AIM 2中
将使用新颖机器创建全因住院的早期警报的自动预测模型
学习技巧。目标3的目的是证明不起眼的内部监测和
早期干预可以减少200名HF患者的第二次队列中的住院治疗。我们假设
基于拟合的综合警报系统将减轻全因住院的负担,并将改善
患者的生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Linwei Wang其他文献
Linwei Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Linwei Wang', 18)}}的其他基金
Inconspicuous Daily Monitoring to Reduce Heart Failure Hospitalizations
不显眼的日常监测可减少心力衰竭住院率
- 批准号:
9883497 - 财政年份:2020
- 资助金额:
$ 59.9万 - 项目类别:
Inconspicuous Daily Monitoring to Reduce Heart Failure Hospitalizations
不显眼的日常监测可减少心力衰竭住院率
- 批准号:
10606586 - 财政年份:2020
- 资助金额:
$ 59.9万 - 项目类别:
Inconspicuous Daily Monitoring to Reduce Heart Failure Hospitalizations
不显眼的日常监测可减少心力衰竭住院率
- 批准号:
10198041 - 财政年份:2020
- 资助金额:
$ 59.9万 - 项目类别:
Peri-procedural transmural electrophysiological imaging of scar-related ventricular tachycardia
疤痕相关室性心动过速的围手术期透壁电生理成像
- 批准号:
10361182 - 财政年份:2019
- 资助金额:
$ 59.9万 - 项目类别:
Peri-procedural transmural electrophysiological imaging of scar-related ventricular tachycardia
疤痕相关室性心动过速的围手术期透壁电生理成像
- 批准号:
10558577 - 财政年份:2019
- 资助金额:
$ 59.9万 - 项目类别:
Automating Real-Time Localization of Target Sites in Catheter Ablation of Ventricular Tachycardia
室性心动过速导管消融中目标部位的自动实时定位
- 批准号:
9590857 - 财政年份:2018
- 资助金额:
$ 59.9万 - 项目类别:
Transmural Electrophysiological Imaging to Guide Catheter Ablation of Arrhythmias
透壁电生理成像指导心律失常导管消融
- 批准号:
8967583 - 财政年份:2014
- 资助金额:
$ 59.9万 - 项目类别:
相似海外基金
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 59.9万 - 项目类别:
Elucidating Non-Routine Events Arising from Interhospital Transfers
阐明院间转移引起的非常规事件
- 批准号:
10749448 - 财政年份:2023
- 资助金额:
$ 59.9万 - 项目类别:
Michigan Emergency Department Improvement Collaborative AltERnaTives to admission for Pulmonary Embolism (MEDIC ALERT PE) Study
密歇根急诊科改进合作入院肺栓塞 (MEDIC ALERT PE) 研究
- 批准号:
10584217 - 财政年份:2023
- 资助金额:
$ 59.9万 - 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
- 批准号:
10759550 - 财政年份:2023
- 资助金额:
$ 59.9万 - 项目类别:
Social Virtual Reality Experiences for Hospitalized Older Adult Trauma Patients to Reduce Pain
为住院老年创伤患者提供社交虚拟现实体验以减轻疼痛
- 批准号:
10575727 - 财政年份:2023
- 资助金额:
$ 59.9万 - 项目类别: