Model-based Cochlear Implant Programming
基于模型的人工耳蜗编程
基本信息
- 批准号:10405540
- 负责人:
- 金额:$ 60.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Acoustic NerveAddressAnatomic ModelsAudiologyAuditoryBiofeedbackCharacteristicsClinicalCochleaCochlear ImplantsComputer ModelsComputer softwareCustomDevicesDistantEarElectrodesEsthesiaFiberFrequenciesFutureGoalsHealthHearingHourImplantImplanted ElectrodesIndividualLeadMeasuresMethodsModelingNerveNerve FibersOperative Surgical ProceduresOutcomePatientsPatternPerformancePopulationProcessRecommendationRefractoryResearchResolutionResortSensorySignal TransductionSiteSpeechSystemTechniquesTechnologyTestingTimeUncertaintyWorkbaseclinical translationdesignelectrical potentialexperienceexperimental studyhearing impairmenthearing restorationimage processingimplantationimprovedimproved outcomeindividual patientneural stimulationneuroprosthesisnovelnovel strategiesprogramsrecruitrelating to nervous systemrestorationsimulationsoundstandard of caretool
项目摘要
Project Summary
The overarching goal of this project is to develop and validate patient-specific computational models of cochlear
implant (CI) stimulation and to use these models to create patient-customized, MOdel-based CI Programming
(MOCIP) strategies that optimize implant performance. CIs are a neuroprosthetic devices that use an array of
implanted electrodes to stimulated the auditory nerve and induce hearing sensation. With over 500,000 recipients
worldwide, CI are considered the standard of care treatment for severe-to-profound sensory-based hearing loss.
While results with these devices have been remarkably successful, a significant number of CI recipients
experience poor speech understanding, and, even among the best performers, restoration to normal auditory
fidelity is rare. It is estimated that only 5% of those who could benefit from this technology pursue implantation,
in large part due to the high-degree of uncertainty in outcomes. A substantial portion of the variability in outcomes
with CIs is due to a sub-optimal electro-neural interface (ENI); however, approaches for estimating the patient-
specific ENI have thus far been unreliable.
The overarching hypothesis of this study is that an accurate estimation of the patient-specific ENI can be
obtained with patient-specific computational models and used to customize CI settings for improved and less
variable implant performance. To test this hypothesis, first, novel image processing and patient-specific
anatomical models, which are tuned using biofeedback signals and permit estimating the ENI by determining
which auditory nerve fibers are healthy and localizing which nerve fibers are stimulated by each electrode, will
be developed and validated. Next, the performance of patient-customized MOCIP strategies that aim to address
sub-optimal conditions found in the ENI will be clinically tested. Finally, MOCIP techniques will be automated
and integrated into software that can be deployed into the clinical workflow. Since MOCIP strategies require only
a change of settings on the CI, they work with existing device technology, do not require further surgery, and are
reversible. If successful, a suite of MOCIP techniques that can objectively guide the programming of CIs towards
optimized settings and improve hearing restoration for new and existing CI recipients will be developed in this
project.
项目摘要
该项目的总体目标是开发和验证人工耳蜗的患者特定计算模型
植入物(CI)刺激并使用这些模型来创建基于患者的,基于模型的CI编程
(MOCIP)优化植入物绩效的策略。顺式是一种使用的神经假体设备
植入电极刺激听觉神经并引起听力。超过500,000名收件人
在全球范围内,CI被认为是严重基于感觉的听力损失的护理标准。
尽管这些设备的结果取得了非常成功,但大量的CI接收者
体验不良的语音理解,即使是表现最好的人,也可以恢复正常的听觉
忠诚是罕见的。据估计,只有5%的人可以从该技术中受益的人,
在很大程度上,由于结果的不确定性高度。结果的大部分变异性
带有顺式是由于亚最佳的电性界面(ENI)所致;但是,估计患者的方法
到目前为止,特定的ENI是不可靠的。
这项研究的总体假设是,可以准确估计患者特异性ENI
使用特定于患者的计算模型获得,用于自定义CI设置以改进,更少
可变植入物的性能。要检验这一假设,首先是新型图像处理和特定于患者
解剖模型是使用生物反馈信号调整的,并允许通过确定ENI进行估算
哪些听觉神经纤维健康且本地化,每个电极刺激哪些神经纤维,将
可以开发和验证。接下来,旨在解决患者的摩托普策略的表现
ENI中发现的次优条件将在临床上测试。最后,Mocip技术将自动化
并集成到可以部署到临床工作流程中的软件中。由于mocip策略仅需要
CI上的设置改变,它们与现有的设备技术合作,不需要进一步手术,并且是
可逆。如果成功,可以客观地指导CIS编程的一套Mocip技术
在此中将开发优化的设置并改善新的CI和现有CI收件人的听力恢复
项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jack Noble其他文献
Jack Noble的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jack Noble', 18)}}的其他基金
Image-Guided Cochlear Implant Programming Techniques
图像引导人工耳蜗植入编程技术
- 批准号:
9060285 - 财政年份:2014
- 资助金额:
$ 60.16万 - 项目类别:
Image-Guided Cochlear Implant Programming Techniques
图像引导人工耳蜗植入编程技术
- 批准号:
8752841 - 财政年份:2014
- 资助金额:
$ 60.16万 - 项目类别:
Image-based frequency reallocation for optimizing cochlear implant programming
基于图像的频率重新分配,用于优化人工耳蜗编程
- 批准号:
8356935 - 财政年份:2012
- 资助金额:
$ 60.16万 - 项目类别:
Image-based frequency reallocation for optimizing cochlear implant programming
基于图像的频率重新分配,用于优化人工耳蜗编程
- 批准号:
8500228 - 财政年份:2012
- 资助金额:
$ 60.16万 - 项目类别:
Accurate Localization of General Tubular Structures in Medical Images
医学图像中一般管状结构的精确定位
- 批准号:
7545744 - 财政年份:2008
- 资助金额:
$ 60.16万 - 项目类别:
Accurate Localization of General Tubular Structures in Medical Images
医学图像中一般管状结构的精确定位
- 批准号:
7858377 - 财政年份:2008
- 资助金额:
$ 60.16万 - 项目类别:
Accurate Localization of General Tubular Structures in Medical Images
医学图像中一般管状结构的精确定位
- 批准号:
7653695 - 财政年份:2008
- 资助金额:
$ 60.16万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Functional and structural characterization of human auditory cortex using high resolution MRI
使用高分辨率 MRI 表征人类听觉皮层的功能和结构
- 批准号:
10728782 - 财政年份:2023
- 资助金额:
$ 60.16万 - 项目类别:
Extending Reach, Accuracy, and Therapeutic Capabilities: A Soft Robot for Peripheral Early-Stage Lung Cancer
扩大范围、准确性和治疗能力:用于周围早期肺癌的软机器人
- 批准号:
10637462 - 财政年份:2023
- 资助金额:
$ 60.16万 - 项目类别:
Dynamic embedding time series models in functional brain imaging
功能性脑成像中的动态嵌入时间序列模型
- 批准号:
10711521 - 财政年份:2023
- 资助金额:
$ 60.16万 - 项目类别:
A Digital Twin for Designing Bladder Treatment informed by Bladder Outlet Obstruction Mechanobiology (BOOM)
根据膀胱出口梗阻力学生物学 (BOOM) 设计膀胱治疗的数字孪生
- 批准号:
10659928 - 财政年份:2023
- 资助金额:
$ 60.16万 - 项目类别: