Mechanisms of Synaptic Homeostasis Governing Pre-Sympathetic Neurons in the Hypothalamic Paraventricular Nucleus
下丘脑室旁核前交感神经元突触稳态的调控机制
基本信息
- 批准号:10400957
- 负责人:
- 金额:$ 48.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAngiotensin IIAnimalsAntihypertensive AgentsAutomobile DrivingAutonomic DysfunctionBathingBehaviorBrainCRISPR/Cas technologyCardiovascular DiseasesCell modelChronicDependovirusDiseaseEnsureEquilibriumExperimental Water DeprivationExposure toFunctional disorderGABA-A ReceptorGenerationsGenesGlutamate TransporterGlutamatesGoalsHeart failureHomeostasisHypertensionIndividualInjectionsInterruptionKineticsKnowledgeLabelLamina TerminalisLinkMediatingMetabolic DiseasesModelingMusNerveNeuronsNuclearPathogenicityPathologicPhysiologic pulsePhysiologicalPlayPreparationProbabilityProcessPropertyProsencephalonRecoveryRestRoleRose BengalSalineSliceSynapsesSynaptic VesiclesTimeTransgenic MiceVesicleViralVirulence FactorsVirusacute stressclinical efficacydensityexcitatory amino acid transporter 3functional outcomesgamma-Aminobutyric Acidimprovedin vivoinsightknock-downmouse Cre recombinasemouse modelnoveloptogeneticsoverexpressionparaventricular nucleusphotoactivationpostsynapticpreoptic nucleuspreservationpresynapticpreventquantumresponserestorationretrograde transportsalt intakestressorsynaptic depressionsynaptic inhibitionuptakevesicular release
项目摘要
Project Summary
Pre-sympathetic neurons (PSNs) of the hypothalamic paraventricular nucleus (PVN) are essential drivers of
physiological and pathological increases of sympathetic nerve activity (SNA). Perhaps their most robust property is
their resting state of discharge quiescence. Early studies linked quiescence to the dominance of synaptic inhibition,
but mechanisms that establish and defend GABAergic inhibitory tonus in the PVN are understood only on a
rudimentary level. This is an important knowledge gap because pathogenic factors that increase PVN-driven SNA
must ultimately subvert or overwhelm mechanisms that regulate the quiescent resting state of PSNs. In preliminary
studies, we uncovered a presynaptic mechanism that is novel to the PVN, referred to as “Glutamate-GABA
strengthening (GGS)”, that increases GABAergic inhibition in pace with synaptic glutamate (Glu) spillover. To do so,
GGS regulates the amplitude of GABA-A receptor-mediated inhibitory postsynaptic currents (IPSCs) through uptake
of synaptically released Glu, ostensibly into local GABA terminals, by the neuronal excitatory amino acid transporter
3 (EAAT3). Once internalized, Glu is converted to GABA and GABA molecules are packaged into synaptic vesicles
at greater than normal density. Stressors that acutely increase PVN-driven SNA are hypothesized to increase
synaptic Glu release without changing extrinsic GABAergic input. As a result, “over-filled” GABA vesicles are
released that dampen excitation and aid restoration of PSN quiescence. During chronic sympathoexcitation
challenges accompanied by reduced GABA input, GGS is subverted (due to low GABA release) and can therefore
provide little opposition to synaptic excitation. Proposed studies will use state-of-the-art transgenic mouse models,
optogenetics and virus-mediated gene over-expression and CRISPR-Cas9 knockdown to assess mechanisms and
functional outcomes of GGS. Kinetics, sensitivity and efficacy of GGS will be established at the single PSN level
using a novel horizontal brain slice preparation that preserves Glu input from the forebrain median preoptic nucleus
(MnPO) as well as GABA input from the PVN peri-nuclear zone (PNZ). Retrogradely transported AAV will be injected
into the PVN of vGlut2-Cre mice to express channelrhodopsin (ChR2) in glutamatergic MnPO-PVN neurons.
Optogenetic activation will determine the capacity of MnPO inputs to drive GGS amongst RVLM-projecting PVN
PSNs. Using vGlut2fl/fl mice, we will determine functional effects of GGS on GABA-A receptor inhibitory tone and
SNA responses to forebrain angiotensin II (AngII) and hyperosmolality when glutamatergic MnPO neurons have
normal (vGlut2 intact) or diminished (vGlut2 knockdown) capacity to release Glu from PVN synapses. To further
illuminate in vivo mechanisms and efficacy of GGS, EAAT3 on PNZ GABA inputs to the PVN will be increased and
decreased to grade PVN GABAergic tonus and the magnitude of PVN-driven SNA responses to (1) acute forebrain
AngII and hyperosmolality as well as (2) sub-acute water deprivation and high salt intake. Proposed studies will
provide unprecedented mechanistic insight into the physiological role GGS plays in generating and defending
PVN PSN quiescence, and are essential for advancing the goal of preventing and reversing disease-promoting
sympathoexcitation.
项目摘要
下丘脑旁脑核(PVN)的交感前神经元(PSN)是必不可少的驱动因素
交感神经活动(SNA)的生理和病理增加。也许他们最强大的财产是
它们的静止静止状态。早期研究将静止与突触抑制的优势联系在一起,
但是,仅在A中理解并捍卫PVN中建立和捍卫Gabaergic抑制性Tonus的机制
基本水平。这是一个重要的知识差距,因为增加了PVN驱动的SNA的病原因子
必须最终颠覆或压倒调节PSN静止状态的机制。在初步
研究,我们发现了一种新型PVN的突触前机制,称为“谷氨酸-GABA
加强(GGS)”,这可以增加合成谷氨酸(GLU)Spilover空间中的GABA能抑制作用。为此,
GGS通过摄取来调节GABA-A受体介导的抑制性突触后电流(IPSC)的放大器
神经元兴奋性氨基酸转运蛋白的合成释放的GLU,表面上是局部GABA终端
3(eaat3)。一旦内部化,GLU将转换为GABA,然后将GABA分子包装成突触蔬菜
在密度高于高度时。假设急性增加PVN驱动的SNA的压力源增加
突触GLU释放而不改变外部GABA能输入。结果,“过度填充”的GABA蔬菜是
释放了Dancen兴奋和辅助PSN静止的恢复。在慢性交感神经期间
通过减少的GABA输入而实现的挑战,GGS被颠覆(由于GABA释放较低),因此可以
几乎没有反对突触兴奋。拟议的研究将使用最先进的转基因小鼠模型,
光遗传学和病毒介导的基因过表达和CRISPR-CAS9敲低,以评估机制和
GGS的功能结果。 GGS的动力学,灵敏度和效率将在单个PSN水平上建立
使用一种新型的水平脑切片制剂,该制剂可保留前脑前核的GLU输入
(MNPO)以及PVN核核管(PNZ)的GABA输入。将注入逆运运行的AAV
进入VGLUT2-CRE小鼠的PVN,以在谷氨酸能MNPO-PVN神经元中表达通道Rhopoptin(ChR2)。
光遗传激活将确定MNPO输入在RVLM-PROXTING PVN中驱动GGS的能力
PSN。使用vglut2fl/fl小鼠,我们将确定GGS对GABA-A受体抑制性张力和
当谷氨酸能MNPO神经元具有谷氨酸血管紧张素II(ANGII)和高胶质的SNA反应
正常(VGLUT2完整)或减小(VGLUT2敲低)从PVN突触中释放GLU的能力。进一步
照明GGS的体内机制和效率,PNZ GABA输入到PVN上的EAAT3将增加,并且
降低到PVN级GABA能TONUS和PVN驱动的SNA对(1)急性前脑的响应的大小
Angii和高温性以及(2)亚急性水剥夺和高盐摄入量。拟议的研究将
提供对GGS在生成和捍卫中发挥的身体作用的前所未有的机械洞察力
PVN PSN静止
同情兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GLENN M TONEY其他文献
GLENN M TONEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GLENN M TONEY', 18)}}的其他基金
Mechanisms of Synaptic Homeostasis Governing Pre-Sympathetic Neurons in the Hypothalamic Paraventricular Nucleus
下丘脑室旁核前交感神经元突触稳态的调控机制
- 批准号:
10205185 - 财政年份:2020
- 资助金额:
$ 48.7万 - 项目类别:
Mechanisms of Synaptic Homeostasis Governing Pre-Sympathetic Neurons in the Hypothalamic Paraventricular Nucleus
下丘脑室旁核前交感神经元突触稳态的调控机制
- 批准号:
10618815 - 财政年份:2020
- 资助金额:
$ 48.7万 - 项目类别:
FASEB SRC on Neural Mechanisms in Cardiovascular Regulation
FASEB SRC 关于心血管调节的神经机制
- 批准号:
8597124 - 财政年份:2013
- 资助金额:
$ 48.7万 - 项目类别:
AngII-Salt Hypertension Increases Respiratory-Vasomotor Neuron Coupling in RVLM
AngII-盐高血压增加 RVLM 中的呼吸-血管运动神经元耦合
- 批准号:
8102853 - 财政年份:2010
- 资助金额:
$ 48.7万 - 项目类别:
AngII-Salt Hypertension Increases Respiratory-Vasomotor Neuron Coupling in RVLM
AngII-盐高血压增加 RVLM 中的呼吸-血管运动神经元耦合
- 批准号:
7985963 - 财政年份:2010
- 资助金额:
$ 48.7万 - 项目类别:
AngII-Salt Hypertension Increases Respiratory-Vasomotor Neuron Coupling in RVLM
AngII-盐高血压增加 RVLM 中的呼吸-血管运动神经元耦合
- 批准号:
8497524 - 财政年份:2010
- 资助金额:
$ 48.7万 - 项目类别:
AngII-Salt Hypertension Increases Respiratory-Vasomotor Neuron Coupling in RVLM
AngII-盐高血压增加 RVLM 中的呼吸-血管运动神经元耦合
- 批准号:
8502541 - 财政年份:2010
- 资助金额:
$ 48.7万 - 项目类别:
AngII-Salt Hypertension Increases Respiratory-Vasomotor Neuron Coupling in RVLM
AngII-盐高血压增加 RVLM 中的呼吸-血管运动神经元耦合
- 批准号:
8293203 - 财政年份:2010
- 资助金额:
$ 48.7万 - 项目类别:
Chronic Intermittent Hypoxia: Common PVN Adaptations Contribute to Neurogenic Hypertension and Ischemic Neuroprotection
慢性间歇性缺氧:常见的 PVN 适应导致神经源性高血压和缺血性神经保护
- 批准号:
9463471 - 财政年份:2008
- 资助金额:
$ 48.7万 - 项目类别:
Chronic Intermittent Hypoxia: Common PVN Adaptations Contribute to Neurogenic Hypertension and Ischemic Neuroprotection
慢性间歇性缺氧:常见的 PVN 适应导致神经源性高血压和缺血性神经保护
- 批准号:
9096159 - 财政年份:2008
- 资助金额:
$ 48.7万 - 项目类别:
相似国自然基金
血管紧张素II活化的钙振荡在TBI后PSH相关的神经功能损害中的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PKCε-Rab11介导KCNQ1通道膜蛋白下调促进血管紧张素II诱导的心肌肥厚致心律失常的机制研究
- 批准号:82204397
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管紧张素II活化的钙振荡在TBI后PSH相关的神经功能损害中的作用与机制研究
- 批准号:82201519
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
血管紧张素II2型受体在血管损伤中抑制周围脂肪组织功能失调的作用及机制研究
- 批准号:82200458
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
血管紧张素II2型受体在血管损伤中抑制周围脂肪组织功能失调的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Angiotensin-(1-7) and beta adrenergic receptor signaling in aging
衰老过程中血管紧张素 (1-7) 和 β 肾上腺素受体信号传导
- 批准号:
10448574 - 财政年份:2022
- 资助金额:
$ 48.7万 - 项目类别:
Angiotensin-(1-7) and beta adrenergic receptor signaling in aging
衰老过程中血管紧张素 (1-7) 和 β 肾上腺素受体信号传导
- 批准号:
10629280 - 财政年份:2022
- 资助金额:
$ 48.7万 - 项目类别:
Targeting NOX4-dependent mitochondrial dysfunction, autophagy and defective calcium handling in AF
针对 AF 中 NOX4 依赖性线粒体功能障碍、自噬和钙处理缺陷
- 批准号:
10392272 - 财政年份:2022
- 资助金额:
$ 48.7万 - 项目类别:
Targeting polyamines to suppress SARS-CoV-2 related disease
靶向多胺抑制 SARS-CoV-2 相关疾病
- 批准号:
10627308 - 财政年份:2021
- 资助金额:
$ 48.7万 - 项目类别:
Sex differences and metabolic responses to chronic stress
性别差异和对慢性压力的代谢反应
- 批准号:
10650346 - 财政年份:2021
- 资助金额:
$ 48.7万 - 项目类别: