CRCNS: Multiple clocks for the encoding of time in corticostriatal circuits

CRCNS:皮质纹状体电路中时间编码的多个时钟

基本信息

  • 批准号:
    10396146
  • 负责人:
  • 金额:
    $ 37.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-23 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

The ability to predict when external events will occur, such as anticipating the actions of a predator or the availability of food, is critical for survival. Converging computational and experimental work suggests that dynamically changing patterns of neural activity, including neural sequences, underlie temporal prediction and temporal processing. It is increasingly clear that timing and temporal prediction are highly distributed computations, however, there has been little effort to systematically contrast and understand the computational tradeoffs between how time is encoded in different brain areas. Furthermore, while converging evidence suggests neural sequences in the striatum play a central role in timing, the mechanisms underlying the generation of neural sequences remains elusive. Critically, it is not known whether neural sequences are actively generated within the striatum or are “driven” by neural sequences present in corticostriatal inputs. We propose to address these major gaps in understanding with a combination of innovative experimental and computational approaches. Our key hypotheses are that: 1) neural sequences in the striatum provide a flexible dynamical regime that allows for temporal scaling, i.e., speeding-up or slowing-down of motor responses, 2) cortical input shapes neural sequence formation in the striatum, 3) local inhibitory circuits serve to refine the quality of these sequences in the striatum, and 4) neural dynamics encoding time are widely distributed throughout the brain but are more accurate in certain areas such as the striatum. Our project is anchored in a two-interval timing task in which mice learn to associate two cues with different reward delays, and has three major aims. Guided by large-scale neural recordings in multiple brain areas we will first develop cortical and striatal recurrent neural network models with the goal of understanding which circuit motifs are best suited to generate neural sequences, and determining which models best capture the experimentally observed activity patterns. Second, we will integrate neural recordings and optogenetic perturbations, together with computational approaches, to determine whether neural sequences in the striatum are driven by cortical input and refined by local inhibition, or in contrast actively generated within the striatum. Third, we will carry out a high-throughput electrophysiological survey of neural activity in multiple brain areas, to identify which areas contain the most accurate temporal codes as well as the potential computational tradeoffs between different codes. RELEVANCE (See instructions): By integrating advanced computational and experimental approaches, this collaborative project will provide fundamentally new insights about how the mammalian brain is able to predict when external events will occur, enabling animals to produce appropriately timed movements that are critical in daily life. This work will reveal which brain circuits are most strongly implicated in timing, which is often impaired in neurological disorders such as Parkinson’s and Huntington’s disease.
预测何时发生外部事件的能力,例如预期捕食者或 食物的可用性对于生存至关重要。融合计算和实验工作表明 神经元活动的动态变化模式,包括神经元序列,临时预测的基础 和临时处理。越来越清楚的是,时间和临时预测高度分布 但是,计算几乎没有努力系统地对比并理解 在不同的大脑区域编码时间之间的计算权衡。此外, 融合的证据表明,纹状体中的神经序列在时机中起着核心作用, 神经序列产生的机制仍然难以捉摸。至关重要的是,这是不知道的 是在纹状体内积极生成神经元序列还是由神经元序列“驱动” 存在于皮质纹状体输入中。我们建议通过 创新实验和计算方法的组合。我们的主要假设是:1) 纹状体中的神经序列提供了一种灵活的动态状态,可以进行临时缩放,即 运动反应的加速或减速,2)皮质输入形状形状形状中性序列形成 纹状体,3)局部抑制电路可完善这些序列中这些序列的质量,并且 4)编码时间的神经动力学广泛分布在整个大脑中,但更准确 某些区域,例如纹状体。我们的项目锚定在一个两间插座的时序任务中 学会将两个线索与不同的奖励延迟相关联,并具有三个主要目标。由大规模指导 多个大脑区域的神经记录我们将首先发展皮质和纹状体复发性神经网络 模型的目标是了解哪些电路基序最适合生成神经元序列, 并确定哪些模型最能捕获实验观察到的活性模式。第二,我们会的 整合的神经记录和光遗传学扰动以及计算方法 确定纹状体中的中性序列是否由皮质输入驱动,并通过局部进行完善 抑制作用,或在纹状体内积极产生的相反。第三,我们将进行高通量 多个大脑区域神经活动的电生理调查,以确定哪个区域包含 最准确的临时代码以及不同代码之间的潜在计算权衡。 相关性(请参阅说明): 通过整合高级计算和实验方法,这个协作项目将 从根本上提供有关哺乳动物大脑如何能够预测何时外部的新见解 将发生事件,使动物能够产生适当的定时运动,这在日常生活中至关重要。 这项工作将揭示哪些脑电路在时机中最严重受损,这通常会受到损害 帕金森氏病和亨廷顿氏病等神经系统疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

DEAN V BUONOMANO的其他基金

Multiplexing working memory and timing: Encoding retrospective and prospective information in transient neural trajectories.
复用工作记忆和计时:在瞬态神经轨迹中编码回顾性和前瞻性信息。
  • 批准号:
    10841182
    10841182
  • 财政年份:
    2023
  • 资助金额:
    $ 37.68万
    $ 37.68万
  • 项目类别:
CRCNS: Multiple clocks for the encoding of time in corticostriatal circuits
CRCNS:皮质纹状体电路中时间编码的多个时钟
  • 批准号:
    10697316
    10697316
  • 财政年份:
    2021
  • 资助金额:
    $ 37.68万
    $ 37.68万
  • 项目类别:
Multiplexing working memory and timing: Encoding retrospective and prospective information in transient neural trajectories.
复用工作记忆和计时:在瞬态神经轨迹中编码回顾性和前瞻性信息。
  • 批准号:
    10709838
    10709838
  • 财政年份:
    2020
  • 资助金额:
    $ 37.68万
    $ 37.68万
  • 项目类别:
CRCNS: Network mechanisms of the learning and encoding of timed motor responses
CRCNS:定时运动反应学习和编码的网络机制
  • 批准号:
    9306222
    9306222
  • 财政年份:
    2016
  • 资助金额:
    $ 37.68万
    $ 37.68万
  • 项目类别:
CRCNS: Network mechanisms of the learning and encoding of timed motor responses
CRCNS:定时运动反应学习和编码的网络机制
  • 批准号:
    9242196
    9242196
  • 财政年份:
    2016
  • 资助金额:
    $ 37.68万
    $ 37.68万
  • 项目类别:
CRCNS: Network mechanisms of the learning and encoding of timed motor responses
CRCNS:定时运动反应学习和编码的网络机制
  • 批准号:
    10017326
    10017326
  • 财政年份:
    2016
  • 资助金额:
    $ 37.68万
    $ 37.68万
  • 项目类别:
Abnormal network dynamics and "learning" in neural circuits from Fmr1-/- mice
Fmr1-/- 小鼠神经回路中的异常网络动态和“学习”
  • 批准号:
    8445001
    8445001
  • 财政年份:
    2012
  • 资助金额:
    $ 37.68万
    $ 37.68万
  • 项目类别:
Abnormal network dynamics and "learning" in neural circuits from Fmr1-/- mice
Fmr1-/- 小鼠神经回路中的异常网络动态和“学习”
  • 批准号:
    8547831
    8547831
  • 财政年份:
    2012
  • 资助金额:
    $ 37.68万
    $ 37.68万
  • 项目类别:
Learning temporal patterns: computational and experimental studies of timing
学习时间模式:时间的计算和实验研究
  • 批准号:
    8385396
    8385396
  • 财政年份:
    2012
  • 资助金额:
    $ 37.68万
    $ 37.68万
  • 项目类别:
Learning temporal patterns: computational and experimental studies of timing
学习时间模式:时间的计算和实验研究
  • 批准号:
    8489369
    8489369
  • 财政年份:
    2012
  • 资助金额:
    $ 37.68万
    $ 37.68万
  • 项目类别:

相似国自然基金

臂旁核区域损伤致长时程“昏迷样”动物模型建立及神经机制研究
  • 批准号:
    81901068
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
三江源大型野生食草动物对区域草畜平衡状态影响及管控机制研究
  • 批准号:
    41971276
  • 批准年份:
    2019
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于组蛋白H3K9me3和DNA甲基化修饰协同作用研究早期胚胎发育过程中基因印记区域的调控
  • 批准号:
    31801059
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
使用三代测序技术研究线粒体DNA非编码区域对其DNA复制和转录的调控
  • 批准号:
    31701089
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
转录因子Msx1与哺乳动物上腭发育的前-后区域化
  • 批准号:
    31771593
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
  • 批准号:
    10751106
    10751106
  • 财政年份:
    2024
  • 资助金额:
    $ 37.68万
    $ 37.68万
  • 项目类别:
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
  • 批准号:
    10636329
    10636329
  • 财政年份:
    2023
  • 资助金额:
    $ 37.68万
    $ 37.68万
  • 项目类别:
Sonodynamic therapy using MRI-guided focused ultrasound in combination with 5-aminolevulinic acid to treat recurrent glioblastoma multiforme
使用 MRI 引导聚焦超声联合 5-氨基乙酰丙酸的声动力疗法治疗复发性多形性胶质母细胞瘤
  • 批准号:
    10699858
    10699858
  • 财政年份:
    2023
  • 资助金额:
    $ 37.68万
    $ 37.68万
  • 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
  • 批准号:
    10644874
    10644874
  • 财政年份:
    2023
  • 资助金额:
    $ 37.68万
    $ 37.68万
  • 项目类别:
Role of YB1 in health disparities in triple negative breast cancer
YB1 在三阴性乳腺癌健康差异中的作用
  • 批准号:
    10655943
    10655943
  • 财政年份:
    2023
  • 资助金额:
    $ 37.68万
    $ 37.68万
  • 项目类别: