Mitochondrial Recovery after Acute Kidney Injury Needs Ribonucleotide Reductase
急性肾损伤后的线粒体恢复需要核糖核苷酸还原酶
基本信息
- 批准号:10396045
- 负责人:
- 金额:$ 23.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:2&apos-DeoxythymidineAcute Renal Failure with Renal Papillary NecrosisAffectApoptosisAtrophicBrainBypassCatalytic DomainCell Culture TechniquesCell HypoxiaCellsChronic Kidney FailureCodeCultured CellsCytosolDNADNA DamageDNA RepairDNA biosynthesisDataDeoxycytidineDeoxyguanosineDevelopmentDialysis procedureDiseaseEnzymesFailureGenesGrowthHealthHealthcareHypoxiaImpairmentIncidenceInjuryInjury to KidneyInterphase CellInvestigationKidneyKidney DiseasesKidney FailureKnockout MiceLeadLesionLoxP-flanked alleleMediatingMembrane ProteinsMitochondriaMitochondrial DNAMitochondrial DNA depletion syndromesModelingMolecularMorbidity - disease rateMusMuscular AtrophyMutationNormal CellNuclearNull LymphocytesOxidantsOxygenPINK1 geneParkinPathologicPathologyPathway interactionsPhenotypeProcessProductionProteinsRRM1 geneRRM2 geneRecoveryRegimenRegulationReperfusion InjuryReporterResearchRetinaRibonucleotide ReductaseRibonucleotide Reductase SubunitRiskRoleStressSuperoxidesSupplementationTP53 geneTherapeuticTherapeutic AgentsTransgenesTransplantationTreatment EfficacyTubular formationUndifferentiatedcancer cellcell growthdeoxyribonucleoside triphosphateefficacy testingimprovedin vivoinsightmolecular pathologymortalitymouse modelnoveloverexpressionoxidant stresspreservationpreventrenal hypoxiarepairedrespiratory proteinresponsetripolyphosphate
项目摘要
PROJECT SUMMARY/ABSTRACT
Significance: Tubule atrophy underlies progression of acute kidney injury (AKI) to chronic kidney disease. The
basis for tubule atrophy after AKI is unknown. We identified a pathology involving RRM2B, alternate regulatory
subunit of ribonucleotide reductase (RNR) as a basis for tubule atrophy after AKI. Cell culture data suggest that
molecular bypass of RNR by deoxynucleosides can produce deoxynucleoside triphosphates (dNTPs) for DNA
synthesis and repair by oxygen independent salvage pathways after AKI to promote tubule recovery.
RNR produces dNTPs. Its classical regulatory subunit RRM2 is inhibited by hypoxia, but the hypoxia tolerant
RRM2B can substitute for RRM2 to maintain dNTPs during hypoxia to prevent nuclear and mitochondrial DNA
damage and preserve cell integrity. RRM2B is induced by hypoxia in cultured cells. Hypoxia mediated increase
of mitochondrial superoxide may induce RRM2B as a beneficial adaptation. A regulatory role for mitochondrial
superoxide was suggested by our finding that MitoPQ, which increases superoxide selectively in mitochondria,
markedly increased cellular RRM2B protein content.
The benefits afforded by RRM2B in hypoxic cells would be abrogated if RRM2B is not available. In support, we
showed that deletion of RRM2B from cultured tubule cells increases DNA damage during hypoxia, and prevents
recovery during reoxygenation. Deoxynucleosides rescued such cells from DNA damage, decreased injury and
promoted recovery. We showed also that tubule atrophy after AKI is accompanied by marked RRM2B depletion
and DNA damage. Since recovering kidneys are hypoxic, RNR inhibition is expected. In such kidneys RRM2B
loss in tubules (rather than an adaptive increase) will have deleterious consequences. Thus, RRM2B loss after
AKI may be the cause for tubule atrophy. While the cause for RRM2B decline in tubules after AKi is unclear, its
importance for recovery requires investigation. To this end, we have three Specific Aims.
Aim 1. We will utilize mouse models of RRM2B deletion and overexpression in tubules to investigate its role in
recovery from AKI.
Aim 2. We will use cultured tubule cells with RRM2B deletion and overexpression, and deoxynucleoside
supplementation, to investigate the role of RNR activity, RRM2B levels and salvage synthesis of dNTPs in
cellular responses to hypoxia. To examine the role of mitochondrial oxidants in adaptation to stress, we will use
Mito-PQ, a selective inducer of mitochondrial superoxide, to elucidate mechanisms of RRM2B regulation.
Aim 3. We will test the efficacy of treatment with deoxynucleosides to promote recovery from ischemic AKI.
Impact: The studies we propose will yield new insights into cellular mechanisms that determine successful or
failed tubule recovery from AKI and possibly identify deoxynucleosides as novel useful therapeutic agents.
项目摘要/摘要
意义:小管萎缩是急性肾脏损伤(AKI)向慢性肾脏疾病的进展。这
AKI后小管萎缩的基础是未知的。我们确定了一种涉及RRM2B的病理学
核糖核苷酸还原酶(RNR)的亚基作为AKI后小管萎缩的基础。细胞培养数据表明
脱氧核苷的RNR分子旁路可以产生DNA的脱氧核苷三磷酸(DNTP)
AKI后通过氧气独立打捞途径的合成和修复,以促进小管恢复。
RNR产生DNTP。它的经典调节亚基RRM2受到缺氧的抑制,但缺氧耐受性
RRM2B可以代替RRM2在缺氧期间维持DNTP,以防止核和线粒体DNA
损坏并保留细胞完整性。 RRM2B是由培养细胞中缺氧诱导的。缺氧介导的增加
线粒体超氧化物可能诱导RRM2B作为有益的适应。线粒体的调节作用
我们的发现提出了超氧化物,即在线粒体中有选择地增加超氧化物的mitopq,
明显增加了细胞RRM2B蛋白含量。
如果RRM2B不可用,RRM2B在低氧细胞中提供的好处将被废除。在支持下,我们
表明从培养小管细胞中删除RRM2B会增加缺氧期间的DNA损伤,并防止DNA损伤
在重氧中恢复。脱氧核苷使此类细胞免于DNA损伤,减少损伤和
促进恢复。我们还表明,AKI后的小管萎缩伴随着明显的RRM2B耗竭
和DNA损伤。由于恢复肾脏是缺氧的,因此预计RNR抑制作用。在这样的肾脏RRM2B中
小管的损失(而不是自适应增加)将带来有害的后果。因此,RRM2B损失
AKI可能是小管萎缩的原因。虽然AKI之后小管下降的RRM2B的原因尚不清楚,但
对恢复的重要性需要调查。为此,我们有三个具体的目标。
AIM 1。我们将利用小管中RRM2B缺失和过表达的鼠标模型来研究其在
从AKI恢复。
AIM 2。我们将使用带有RRM2B缺失和过表达的培养的小管细胞以及脱氧核苷
补充,研究RNR活性的作用,RRM2B水平和DNTP的挽救合成
细胞对缺氧的反应。为了检查线粒体氧化剂在适应压力中的作用,我们将使用
Mito-PQ是线粒体超氧化物的选择性诱导剂,以阐明RRM2B调节的机制。
AIM 3。我们将测试脱氧核苷治疗的功效,以促进缺血性AKI的恢复。
影响:我们提出的研究将产生对决定成功或的细胞机制的新见解
小管从AKI中恢复失败,并可能识别出脱氧核苷是新型有用的治疗剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MANJERI A VENKATACHALAM其他文献
MANJERI A VENKATACHALAM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MANJERI A VENKATACHALAM', 18)}}的其他基金
Mitochondrial Recovery after Acute Kidney Injury Needs Ribonucleotide Reductase
急性肾损伤后的线粒体恢复需要核糖核苷酸还原酶
- 批准号:
9974229 - 财政年份:2020
- 资助金额:
$ 23.25万 - 项目类别:
Mitochondrial Recovery after Acute Kidney Injury Needs Ribonucleotide Reductase
急性肾损伤后的线粒体恢复需要核糖核苷酸还原酶
- 批准号:
10159900 - 财政年份:2020
- 资助金额:
$ 23.25万 - 项目类别:
Pathogenesis of tubule atrophy and failed recovery after acute kidney injury
急性肾损伤后肾小管萎缩及恢复失败的发病机制
- 批准号:
9198226 - 财政年份:2016
- 资助金额:
$ 23.25万 - 项目类别:
MECHANISMS OF PROTECTION BY GLYCINE AGAINST CELL DEATH
甘氨酸防止细胞死亡的机制
- 批准号:
2148694 - 财政年份:1994
- 资助金额:
$ 23.25万 - 项目类别:
MECHANISMS OF PROTECTION BY GLYCINE AGAINST CELL DEATH
甘氨酸防止细胞死亡的机制
- 批准号:
2148695 - 财政年份:1994
- 资助金额:
$ 23.25万 - 项目类别:
MECHANISMS OF PROTECTION BY GLYCINE AGAINST CELL DEATH
甘氨酸防止细胞死亡的机制
- 批准号:
2458846 - 财政年份:1994
- 资助金额:
$ 23.25万 - 项目类别:
MECHANISMS OF PROTECTION BY GLYCINE AGAINST CELL DEATH
甘氨酸防止细胞死亡的机制
- 批准号:
2749520 - 财政年份:1994
- 资助金额:
$ 23.25万 - 项目类别:
MECHANISMS OF PROTECTION BY GLYCINE AGAINST CELL DEATH
甘氨酸防止细胞死亡的机制
- 批准号:
2148693 - 财政年份:1994
- 资助金额:
$ 23.25万 - 项目类别:
INTERNATIONAL SATELLITE SYMPOSIUM ON ACUTE RENAL FAILURE
急性肾衰竭国际卫星研讨会
- 批准号:
3434731 - 财政年份:1993
- 资助金额:
$ 23.25万 - 项目类别:
相似国自然基金
化学修饰AS1411的设计、合成及生物学性质研究
- 批准号:21502104
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
荧光铜纳米粒的发卡型DNA模板设计和应用
- 批准号:21505023
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
Let-7a联合18F-FLT预测局部晚期非小细胞肺癌放疗加速再增殖
- 批准号:81502667
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
代谢与增殖显像指导非小细胞肺癌个体化放疗靶区剂量雕刻的分子机制及应用研究
- 批准号:81472810
- 批准年份:2014
- 资助金额:74.0 万元
- 项目类别:面上项目
克隆及功能分析拟南芥精细胞中磷酸化dTMP的激酶
- 批准号:31200234
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
DELINEATING THE ROLE OF THE HOMOCYSTEINE-FOLATE-THYMIDYLATE SYNTHASE AXIS AND URACIL ACCUMULATION IN AFRICAN AMERICAN PROSTATE TUMORS
描述同型半胱氨酸-叶酸-胸苷酸合成酶轴和尿嘧啶积累在非裔美国人前列腺肿瘤中的作用
- 批准号:
10723833 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
Using ex vivo, in vivo models and patient mutations to interrogate pancreatic exocrine-endocrine cross talk
使用离体、体内模型和患者突变来探究胰腺外分泌-内分泌串扰
- 批准号:
10706558 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别:
Using ex vivo, in vivo models and patient mutations to interrogate pancreatic exocrine-endocrine cross talk
使用离体、体内模型和患者突变来探究胰腺外分泌-内分泌串扰
- 批准号:
10594228 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别:
MTR1: A Dinucleotide Substrate Enhancement and Molecular ByPass Therapy for Thymidine Kinase 2 Deficiency
MTR1:针对胸苷激酶 2 缺乏症的二核苷酸底物增强和分子旁路疗法
- 批准号:
10705703 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别: