Structure-Function Studies of Ribonucleotide Reductase
核糖核苷酸还原酶的结构-功能研究
基本信息
- 批准号:10387984
- 负责人:
- 金额:$ 8.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1992
- 资助国家:美国
- 起止时间:1992-04-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:Active SitesAddressAffinityAmidesAmino AcidsAnabolismAnti-Bacterial AgentsAnti-Inflammatory AgentsAnti-Retroviral AgentsBacterial Antibiotic ResistanceBiochemicalBiologicalBiological AssayBiological ProcessBiologyChemicalsChemistryClinicalComplexCoupledCouplingCryoelectron MicroscopyCysteineDNADNA biosynthesisDeoxyribonucleotidesDevelopmentDiseaseDrug DesignDrug TargetingElectron TransportElectronsEnzymatic BiochemistryEnzymesEventExperimental DesignsFaceFutureGenerationsHealthHeartHumanIndividualKineticsLasersLifeLinkMalignant NeoplasmsMediatingMethodsModalityModelingMolecular BiologyMolecular ConformationNatureNucleotidesOutcomeOxidation-ReductionOxidoreductasePathway interactionsPharmaceutical PreparationsPhasePlayProcessProtonsReactionRegulationResolutionRibonucleotide ReductaseRibonucleotidesRoleSiteSpecificitySpectrum AnalysisStretchingStructureSulfhydryl CompoundsSystemTechniquesTherapeutic UsesTryptophanVariantVisualizationWorkbasecancer therapychemotherapycofactordesignholistic approachinhibitor/antagonistinnovationinsightinstrumentationinterdisciplinary approachnovel therapeuticsnucleic acid metabolismprotein structurerepairedsmall molecule therapeuticstherapeutic targetunnatural amino acidsvibration
项目摘要
Abstract
Proton-coupled electron transfer (PCET) is a ubiquitous mechanism in biology, serving as the basis for
mediating steps involving biosynthesis of metabolites, radical generation and transport, and the activation of
substrates at cofactors. The control of highly reactive radical intermediates is achieved by coupling proton and
electron transfer processes. Management of radicals in biology is of particular relevance to human health, as
enzymes operating by PCET are therapeutic targets with wide-ranging applications including chemotherapy,
anti-retroviral and anti-bacterial drugs and anti-inflammatory agents. Of the enzymes that operate by PCET,
ribonucleotide reductases (RNRs) are exceptional in their biological function and are paramount to health, as
the enzymes produce the DNA building blocks for life. The central role of RNRs in nucleic acid metabolism has
made the human RNR the target of five clinically used therapeutics that shut down the PCET pathway and,
consequently, nucleotide reduction. The class Ia RNR is the exemplar of biological PCET; its function
originates from a reversible long-range radical transport pathway that spans 35 Å and two subunits (α and β)
upon every turnover. An interdisciplinary approach integrates biochemical methods with the transient
spectroscopy afforded by the requested instrumentation to target three specific aims. Specific Aim 1 seeks to
address the role of PCET in nucleotide reduction, both in the substrate activation phase involving the
conserved radical at the “top face” of the active site, as well as in the radical substrate reduction phase at the
“bottom face” of the active site. Work will be advanced by interfacing the TRIR instrumentation with existing
laser instrumentation to define kinetics of key intermediates associated with individual steps of RNR active site
chemistry and with model compounds that faithfully capture the RNR active site chemistry. The TRIR
technique will also be used the follow amide I and II stretches of key residues in amino acid networks that
govern allosteric PCET regulation between the α and β subunits. This work is guided by new structural insights
afforded from cryo-EM studies, which allow both the nature of subunit interactions and the networks of amino
acids that connect the catalytic, specificity, and activity sites of the intact enzyme to be identified. The
structural and temporal visualization of subunit dynamics that come from these studies will inform on the
design of new small molecule therapeutics targeting the subunit interface. The TRIR will also aid in studies of
Specific Aim 3 that utilize biochemical and molecular biology innovations to elucidate initial events of radical
transfer within the β-subunit, with a focus on a critical tryptophan within the PCET pathway.
抽象的
质子耦合电子转移(PCET)是生物学中普遍存在的机制,是
介导步骤涉及代谢物的生物合成、自由基的产生和运输以及自由基的激活
高反应性自由基中间体的控制是通过质子和质子的偶联来实现的。
生物学中自由基的管理与人类健康特别相关,因为
PCET 操作的酶是具有广泛应用的治疗靶点,包括化疗、
PCET 发挥作用的抗逆转录病毒药物、抗菌药物和抗炎药物,
核糖核苷酸还原酶 (RNR) 具有特殊的生物学功能,对健康至关重要,因为
RNR 在核酸代谢中发挥着核心作用。
使人类 RNR 成为五种临床使用的治疗方法的目标,这些治疗方法可关闭 PCET 途径,并且,
因此,Ia 类 RNR 是生物 PCET 功能的典范;
源自跨越 35 Å 和两个亚基(α 和 β)的可逆长程自由基传输途径
每次营业额都采用跨学科方法将生化方法与瞬态相结合。
特定目标 1 旨在通过所需仪器提供的光谱来实现三个特定目标。
解决 PCET 在核苷酸还原中的作用,两者都在涉及
活性位点“顶面”的保守自由基,以及自由基底物还原相
活动站点的“底面”工作将通过将 TRIR 仪器与现有的接口来推进。
激光仪器定义与 RNR 活性位点各个步骤相关的关键中间体的动力学
化学和忠实捕获 RNR 活性位点化学的模型化合物。
技术还将用于氨基酸网络中关键残基的以下酰胺 I 和 II 段,
控制 α 和 β 亚基之间的变构 PCET 调节这项工作以新的结构见解为指导。
冷冻电镜研究提供了亚基相互作用的性质和氨基网络
连接待鉴定的完整酶的催化、特异性和活性位点的酸。
来自这些研究的亚基动力学的结构和时间可视化将告知
针对亚基界面的新小分子疗法的设计也将有助于研究。
具体目标 3 利用生化和分子生物学创新来阐明激进的初始事件
β-亚基内的转移,重点是 PCET 途径中的关键色氨酸。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL G. NOCERA其他文献
DANIEL G. NOCERA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL G. NOCERA', 18)}}的其他基金
PROTON-COUPLED ELECTRON TRANSFER IN BIOMIMETIC SYSTEMS
仿生系统中的质子耦合电子转移
- 批准号:
6476529 - 财政年份:1992
- 资助金额:
$ 8.23万 - 项目类别:
COUPLED ELECTRON-PROTON AND ELECTRON TRANSFER REACTIONS
电子-质子耦合和电子转移反应
- 批准号:
3306722 - 财政年份:1992
- 资助金额:
$ 8.23万 - 项目类别:
Proton-Coupled Electron Transfer in Biomimetic and Natural Systems
仿生和自然系统中的质子耦合电子转移
- 批准号:
8640305 - 财政年份:1992
- 资助金额:
$ 8.23万 - 项目类别:
Proton-Coupled Electron Transfer in Biomimetic Systems
仿生系统中的质子耦合电子转移
- 批准号:
7290811 - 财政年份:1992
- 资助金额:
$ 8.23万 - 项目类别:
Proton-Coupled Electron Transfer in Biomimetic and Natural Systems
仿生和自然系统中的质子耦合电子转移
- 批准号:
7753606 - 财政年份:1992
- 资助金额:
$ 8.23万 - 项目类别:
Proton-Coupled Electron Transfer in Biomimetic and Natural Systems
仿生和自然系统中的质子耦合电子转移
- 批准号:
8668064 - 财政年份:1992
- 资助金额:
$ 8.23万 - 项目类别:
PROTON-COUPLED ELECTRON TRANSFER IN BIOMIMETIC SYSTEMS
仿生系统中的质子耦合电子转移
- 批准号:
6625089 - 财政年份:1992
- 资助金额:
$ 8.23万 - 项目类别:
Structure-Function Studies of Ribonucleotide Reductase
核糖核苷酸还原酶的结构-功能研究
- 批准号:
10551896 - 财政年份:1992
- 资助金额:
$ 8.23万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
- 批准号:
10725416 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别:
Structural and functional characterization of glycosyltransferases in the Campylobacter concisus N-linked glycoconjugate biosynthetic pathway
弯曲杆菌 N 连接糖复合物生物合成途径中糖基转移酶的结构和功能表征
- 批准号:
10607139 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别:
Development of Selective Oxidative Biocatalytic Methods
选择性氧化生物催化方法的发展
- 批准号:
10606798 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别:
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
- 批准号:
10606459 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别:
Modulating Fibrinolysis Dynamics by Leveraging Multivalent Avidity to Control Enzyme Activity
通过利用多价亲和力控制酶活性来调节纤维蛋白溶解动力学
- 批准号:
10635496 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别: