Iron-Catalyzed Carbon-Carbon and Carbon-Heteroatom Bond Forming Reactions
铁催化碳-碳和碳-杂原子键形成反应
基本信息
- 批准号:10388784
- 负责人:
- 金额:$ 8.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-05 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AlkenesCarbonCatalysisChemicalsChemistryCouplingDevelopmentFoundationsGoalsGrantHealthHealth SciencesHumanIronKineticsLigandsMetalsMethodologyMethodsMissionMolecularMolecular BiologyMolecular ProbesOrganic SynthesisPalladiumPerformancePharmaceutical ChemistryPharmacologic SubstancePharmacologyPlatinumProductionPublic HealthReactionReagentResearchRouteSaltsSpectrum AnalysisStructureSustainable DevelopmentSystemTransition ElementsUnited States National Institutes of HealthWorkbasecatalystcostdensitydesignimprovedinnovationinsightnext generationnoveltheories
项目摘要
Transition metal catalysis has solved countless problems in total synthesis, pharmaceutical chemistry, and
the production of fine chemicals. While these reactions have traditionally been performed using platinum
group metals (PGMs), there has been a recent push to develop methods that circumvent the need for
expensive and toxic precious metal catalysts. A growing body of research has demonstrated that iron can be
an excellent catalyst across a wide variety of organic transformations, including reactions that have proven
difficult for PGMs, such as the cross-coupling of alkyl halides and Grignard reagents with both high activity and
selectivity. While iron-catalyzed C-C cross-couplings and olefin aminofunctionalizations offer tremendous
potential for sustainable, low-cost methods for selective C-C and C-N bond formation in organic synthesis, a
detailed molecular-level understanding of these systems has remained elusive, thus, hindering rational catalyst
development. This limitation is in stark contrast to palladium chemistry, where detailed studies of active
catalyst structure and mechanism have provided the foundation for the continued design and development of
catalysts with novel and/or improved catalytic performance. Our long-term goal is to develop iron-catalyzed
carbon-carbon and carbon-heteroatom bond forming reactions to the level of understanding currently present
for palladium, thus permitting the rational development of iron chemistry across the spectrum of desired C-C,
C-N and C-X (X = B, F, etc.) bond forming reactions. In the proposed grant, a novel experimental approach
combining inorganic spectroscopies, density functional theory, synthesis and kinetic studies will be utilized to
provide molecular-level insight into the active iron catalysts and reaction mechanisms involved in iron-
catalyzed C-C cross-coupling and olefin aminofunctionalization. These insights can be utilized to inspire and
facilitate the development of new catalysts and reaction methodologies with improved catalytic performance.
Following our successful work in the prior grant period, the specific aims of the proposal are to: (1) expand
molecular-level understanding of the active iron catalysts and reaction mechanisms present in iron-ligand
catalyzed C-C cross-coupling, (2) expand molecular-level understanding of the active iron catalysts and
reaction mechanisms present in C-C cross-couplings with simple ferric salts, and (3) develop molecular-level
understanding of the active iron catalysts and reaction mechanisms present in iron-catalyzed olefin
aminofunctionalizations. The research is innovative because it involves a novel physical-inorganic approach to
study iron-catalyzed organic reactions and advances our understanding of the active iron species and
mechanisms involved in catalysis to inspire and facilitate the development of improved methodologies. The
proposed research is significant because it is expected to expand the number of molecules that can be made
using low-cost, sustainable iron catalysis. Long term, this expansion of synthetic methods will enable
discoveries in molecular biology and pharmacology of direct impact to human health.
过渡金属催化解决了无数的总合成,药物化学和
精细化学物质的产生。传统上使用白金进行了这些反应
集团金属(PGMS),最近有一个努力开发方法来规避需求
昂贵且有毒的贵金属催化剂。越来越多的研究表明铁可以是
跨多种有机转化的出色催化剂,包括已证明的反应
对于PGM来说,很难,例如烷基卤化物和具有较高活性和高活性的Grignard试剂的交叉偶联
选择性。铁催化的C-C交叉耦合和烯烃氨基官能化提供了巨大的
有机合成中选择性C-C和C-N键形成的可持续低成本方法的潜力,A
对这些系统的详细分子级别的理解仍然难以捉摸,因此阻碍了理性催化剂
发展。这种局限性与钯化学形成鲜明对比,其中有效研究
催化剂结构和机制为持续设计和开发的基础
具有新颖和/或改善催化性能的催化剂。我们的长期目标是开发铁催化
碳碳和碳杂质键键对当前存在的理解水平形成反应
对于钯,因此允许铁化学在所需的C-C频谱中的合理发展,
C-N和C-X(X = B,F等)键形成反应。在拟议的赠款中,一种新型的实验方法
结合无机光谱,密度功能理论,合成和动力学研究将用于
提供分子水平的洞察力,以了解参与铁的活性铁催化剂和反应机制
催化的C-C交叉偶联和烯烃氨基功能化。这些见解可用于激发和
促进新的催化剂和反应方法的发展,并改善催化性能。
遵循上一批赠款期间的成功工作,该提案的具体目的是:(1)扩展
分子水平对铁 - 配体中存在的活性铁催化剂和反应机制的理解
催化的C-C交叉偶联,(2)扩展了对活性铁催化剂和
C-C交叉偶联中存在与简单铁盐的反应机制,(3)发展分子级
了解铁催化的烯烃中存在的活性铁催化剂和反应机制
功能化。这项研究具有创新性,因为它涉及一种新颖的物理无机方法
研究铁催化的有机反应,并提高了我们对活性铁物种的理解和
催化涉及的机制激发和促进改进方法的发展。这
拟议的研究很重要,因为有望扩大可以制作的分子数量
使用低成本的可持续铁催化。长期,这种合成方法的扩展将启用
分子生物学和药理学对人类健康的直接影响的发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael L Neidig其他文献
Michael L Neidig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael L Neidig', 18)}}的其他基金
Iron-Catalyzed Carbon-Carbon and Carbon-Heteroatom Bond Forming Reactions
铁催化碳-碳和碳-杂原子键形成反应
- 批准号:
10454402 - 财政年份:2014
- 资助金额:
$ 8.53万 - 项目类别:
Iron-Catalyzed Carbon-Carbon and Carbon-Heteroatom Bond Forming Reactions
铁催化碳-碳和碳-杂原子键形成反应
- 批准号:
10227005 - 财政年份:2014
- 资助金额:
$ 8.53万 - 项目类别:
Iron-Catalyzed Carbon-Carbon and Carbon-Heteroatom Bond Forming Reactions
铁催化碳-碳和碳-杂原子键形成反应
- 批准号:
9816315 - 财政年份:2014
- 资助金额:
$ 8.53万 - 项目类别:
相似国自然基金
构筑碳基Fe3O4-FeCx异质结催化CO2加氢合成烯烃的机制研究
- 批准号:42377249
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
“蜂巢催化”高碳烯烃氢甲酰化反应中的基础问题研究
- 批准号:22372188
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
ZSM-5/铝酸钙酸碱双功能催化剂催化裂解重油制低碳烯烃作用机制及过程强化
- 批准号:22308269
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
催化CO2加氢为低碳烯烃的介孔碳限域Fe系催化剂的可控构筑与调控机制研究
- 批准号:22378345
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
富二氧化碳合成气转化接力催化制低碳烯烃
- 批准号:22372136
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Development, Elucidation, and Application of New Principles in Stereoselective Catalysis
立体选择性催化新原理的开发、阐明和应用
- 批准号:
10622995 - 财政年份:2023
- 资助金额:
$ 8.53万 - 项目类别:
Stereoselective Transition Metal Catalysis Enabled by Hydrogen-Bond Donor Mediated Electrophile Activation
氢键供体介导的亲电子试剂活化实现立体选择性过渡金属催化
- 批准号:
10605979 - 财政年份:2023
- 资助金额:
$ 8.53万 - 项目类别:
Discovering catalytic strategies for transition metal-catalyzed reactions to construct topologically complex organic scaffolds
发现过渡金属催化反应的催化策略以构建拓扑复杂的有机支架
- 批准号:
10714006 - 财政年份:2023
- 资助金额:
$ 8.53万 - 项目类别:
Methods for Enantioselective Spirocycle Synthesis and Radical Hydroamination of Trisubstituted Alkenes
三取代烯烃的对映选择性螺环合成和自由基氢胺化方法
- 批准号:
10785901 - 财政年份:2023
- 资助金额:
$ 8.53万 - 项目类别:
Electrocatalysis for the synthesis of chiral and PET imaging pharmaceuticals
电催化合成手性和 PET 成像药物
- 批准号:
10681378 - 财政年份:2022
- 资助金额:
$ 8.53万 - 项目类别: