A-Z junction formation drives recognition of Alu RNAs by ADAR1 and supports viral infectivity and replication
A-Z 连接的形成驱动 ADAR1 对 Alu RNA 的识别,并支持病毒的感染性和复制
基本信息
- 批准号:10385045
- 负责人:
- 金额:$ 3.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AdenosineAdoptedAlu ElementsAmplifiersBindingBinding SitesBiochemicalBiological ProcessBiophysicsCellsCharacteristicsDNADeaminaseDiseaseDouble-Stranded RNA Binding DomainEventFoundationsGenetic TranscriptionGrowthHelix-Turn-Helix MotifsHumanHuman GenomeImmune responseInfectionInflammatory ResponseInnate Immune ResponseInnate Immune SystemInosineInterferonsKineticsKnowledgeMethodsMolecularMolecular ConformationMutationN-terminalNMR SpectroscopyNaturePathway interactionsPlayPopulationPrimatesProliferatingProtein IsoformsProteinsRNARNA BindingRNA ConformationRNA EditingRNA Recognition MotifResearchResolutionRetrotransposonRoleSequencing BiochemistrySideSignal TransductionSpecificityStructureTLR3 geneTechniquesTestingTissue-Specific Gene ExpressionViralVirusVirus DiseasesWest Nile virusWorkX-Ray CrystallographyZ-Form DNAalpha helixbiological adaptation to stressbiological researchconformational conversioncostdesigndsRNA adenosine deaminaseexperimental studyfightingin vivomutantpreventresponsestructural biologysynergismtooltranscriptometranscriptome sequencingtreatment strategy
项目摘要
Project Summary
Self and non-self RNA must be distinguished by the cell in order to avoid triggering the innate immune
response when not needed. In humans, self RNAs are edited by adenosine deaminase that acts on RNA
(ADAR1), which modifies adenosines to inosines. The vast majority of A-to-I editing events occur in primate-
specific Alu elements, which are the most prolific retrotransposon found within the human genome. Alu
elements have been shown to be the primary drivers of RIG-I, MDA-5, and TLR3 signaling suggesting that the
primary function of ADAR1-dependent editing of Alu elements is to suppress the immune response. Editing is
augmented upon infection by viruses primarily through the activity of the longer, interferon-induced, isoform of
ADAR1 (ADAR1p150), which is unique from the short isoform in that it has a N-terminal Z-RNA binding domain
(Zα) and that it is pro-viral. This suggests that the Z-RNA binding function of Zα plays a critical role in targeting
ADAR1p150 to Z-RNA-forming regions within Alu elements along with a nearby structurally homologous Zβ
domain, however, the RNA binding mechanisms and specificities of ADAR1p150 are poorly characterized. My
hypothesis is that the N-terminal Zα domain and the closely related Zβ domain augment A-to-I editing
by targeting ADAR1p150 to Z-RNA-forming regions within Alu elements during the interferon response.
This increased editing in-turn “blunts” the interferon response and allows many types of viruses to proliferate
unchallenged. In this proposal, I present a strategy which integrates structural biology, RNA-sequencing, and
biochemistry techniques to uncover specific Z-RNA-forming sequences within Alu elements and during
infection and answer basic questions about A-to-Z RNA transitions in Alu elements by the Zα and Zβ domains
of ADAR1p150. My specific aims are (Aim 1) to characterize the transition from A- to Z-RNA in Alu RNAs
through biochemical and structural techniques. I also plan (Aim 2) to investigate how the Z-RNA recognizing
ability of Zα and Zβ contributes to recognition and editing of Alu elements in vivo and how it correlates to West
Nile infection of HEK293T cells by RNA-sequencing techniques. Due to our lack of knowledge about the Z-
DNA/RNA binding domain of ADAR1, we have likely vastly overlooked the repertoire of RNA segments able to
adopt Z-conformations within the transcriptome. The results of my proposal will help to fill this gap in
knowledge, laying the foundations for further research on the importance of Z-RNA in biological processes and
help guide studies attempting to manipulate A-to-I editing as a tool for treating many types of diseases or
inhibit the pro-viral characteristics of ADAR1p150.
项目概要
细胞必须区分自身和非自身RNA,以避免触发先天免疫
在人类中,自身 RNA 被作用于 RNA 的腺苷脱氨酶编辑。
(ADAR1),它将腺苷修饰为肌苷 绝大多数 A 到 I 编辑事件发生在灵长类动物中。
特定的 Alu 元件,这是人类基因组中发现的最多产的逆转录转座子。
元素已被证明是 RIG-I、MDA-5 和 TLR3 信号传导的主要驱动因素,表明
ADAR1 依赖性 Alu 元件编辑的主要功能是抑制免疫反应。
主要通过干扰素诱导的较长亚型的活性在病毒感染后增强
ADAR1 (ADAR1p150),与短亚型不同,它具有 N 端 Z-RNA 结合域
(Zα) 并且它是促病毒的,这表明 Zα 的 Z-RNA 结合功能在靶向中发挥着关键作用。
ADAR1p150 到 Alu 元件内的 Z-RNA 形成区域以及附近的结构同源 Zβ
然而,ADAR1p150 的 RNA 结合机制和特异性尚不清楚。
假设 N 端 Zα 结构域和密切相关的 Zβ 结构域增强了 A 到 I 编辑
在干扰素反应期间,将 ADAR1p150 靶向 Alu 元件内的 Z-RNA 形成区域。
这种增加的编辑反过来“削弱”了干扰素反应,并允许多种类型的病毒增殖
在这个提案中,我提出了一个整合了结构生物学、RNA 测序和技术的策略。
生物化学技术揭示 Alu 元素内特定的 Z-RNA 形成序列
感染并回答有关 Zα 和 Zβ 结构域 Alu 元件中 A 到 Z RNA 转换的基本问题
我的具体目标是(目标 1)表征 Alu RNA 中从 A-RNA 到 Z-RNA 的转变。
我还计划(目标 2)通过生物化学和结构技术研究 Z-RNA 是如何识别的。
Zα 和 Zβ 的能力有助于体内 Alu 元素的识别和编辑及其与 West 的关联
由于我们缺乏对 Z-的了解,通过 RNA 测序技术对 HEK293T 细胞进行 Nile 感染。
ADAR1 的 DNA/RNA 结合域,我们可能极大地忽略了能够
在转录组中采用 Z 构象我的提案的结果将有助于填补这一空白。
知识,为进一步研究 Z-RNA 在生物过程中的重要性奠定基础
帮助指导尝试将 A-to-I 编辑作为治疗多种疾病的工具的研究,或
抑制 ADAR1p150 的促病毒特性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Parker J Nichols其他文献
Parker J Nichols的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Parker J Nichols', 18)}}的其他基金
A-Z junction formation drives recognition of Alu RNAs by ADAR1 and supports viral infectivity and replication
A-Z 连接的形成驱动 ADAR1 对 Alu RNA 的识别,并支持病毒的感染性和复制
- 批准号:
10540225 - 财政年份:2021
- 资助金额:
$ 3.53万 - 项目类别:
相似国自然基金
锶银离子缓释钛表面通过线粒体自噬调控NLRP3炎症小体活化水平促进骨整合的机制研究
- 批准号:82301139
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
万寿菊黄酮通过MAPK/Nrf2-ARE通路缓解肉鸡肠道氧化应激损伤的作用机制
- 批准号:32302787
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群及其代谢产物通过mRNA m6A修饰调控猪肉品质的机制研究
- 批准号:32330098
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
PUFAs通过SREBPs提高凡纳滨对虾低盐适应能力的机制研究
- 批准号:32303021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EGLN3羟化酶通过调控巨噬细胞重编程促进肺癌细胞EMT及转移的机制研究
- 批准号:82373030
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 3.53万 - 项目类别:
Creation of a knowledgebase of high quality assertions of the clinical actionability of somatic variants in cancer
创建癌症体细胞变异临床可行性的高质量断言知识库
- 批准号:
10555024 - 财政年份:2023
- 资助金额:
$ 3.53万 - 项目类别:
Developing a robust native extracellular matrix to improve islet function with attenuated immunogenicity for transplantation
开发强大的天然细胞外基质,以改善胰岛功能,并减弱移植的免疫原性
- 批准号:
10596047 - 财政年份:2023
- 资助金额:
$ 3.53万 - 项目类别:
Deciphering the mechanics of microtubule networks in mitosis
破译有丝分裂中微管网络的机制
- 批准号:
10637323 - 财政年份:2023
- 资助金额:
$ 3.53万 - 项目类别:
Applying Population Management Best Practices to Preventive Genomic Medicine
将人口管理最佳实践应用于预防性基因组医学
- 批准号:
10674202 - 财政年份:2023
- 资助金额:
$ 3.53万 - 项目类别: