Leveraging ambulatory assessment data and machine learning to develop personalized prediction models of suicidal ideation
利用动态评估数据和机器学习开发自杀意念的个性化预测模型
基本信息
- 批准号:10386055
- 负责人:
- 金额:$ 3.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2022-12-11
- 项目状态:已结题
- 来源:
- 关键词:BehavioralCause of DeathCellular PhoneClinicalClinical assessmentsCollectionCommunicationComplexCustomDataData AnalysesData CollectionDevicesEcological momentary assessmentEmergency SituationFeeling suicidalFutureHead Start ProgramHourIndividualInterventionLinkMachine LearningMapsMethodologyMethodsModelingNational Institute of Mental HealthNatureParticipantPatient Self-ReportPatternPersonsPhysical activityPopulationPreventionProcessResearchResearch DesignResolutionRiskRisk FactorsSamplingSeriesSeveritiesSleepSocial InteractionStrategic PlanningSuicideSuicide attemptSuicide preventionTimeTrainingVisitWorkYouthadaptive interventionhigh riskimprovedindividual variationinnovationmachine learning algorithmmobile computingpersonalized medicinepersonalized predictionspersonalized risk predictionpost-doctoral trainingprecision medicinepredictive modelingpreventreal time monitoringresponserisk predictionrisk prediction modelsensorsocialsuicidal behaviorsuicidal risksuicide ratetime use
项目摘要
A.7. PROJECT SUMMARY/ABSTRACT
The proposed research will leverage active and passive ambulatory assessment (AA) methods and machine
learning to develop personalized suicidal ideation (SI) prediction models among a clinical sample of youth at
high-risk for suicidality. This work is timely and important, given that suicide is currently the second-leading
cause of death among youth in the U.S., and rates of SI and suicidal behavior have risen steadily over the past
20 years. SI is a critical target for predictive models, as it is an identifiable, reliable, and modifiable antecedent
of suicidal behavior. Developing predictive models that can effectively predict SI may pave the way for just-in-
time interventions delivered at the precise time of peak risk, thus preventing suicidal behavior before it occurs.
However, despite decades of research, our ability to accurately predict SI remains poor, likely because
suicidality results from a complex interaction between contextualized dynamic processes that are largely
specific to each individual. Yet, most research has attempted to predict SI, a highly person-specific
phenomenon, from group-level data—which can adequately identify who is at risk but not when an individual is
at risk, which is critical for prevention. Thus, to improve our understanding and prediction of SI it is imperative
to take an approach that properly accounts for individual variability (i.e., personalized or precision medicine),
whereby the model is fit to the person rather than vice versa.
Advancements in ambulatory assessment, mobile computing, and machine learning allow for the collection,
management, and analysis of dynamic, high-resolution data required to develop personalized risk prediction
models. I propose to combine these methodological advancements to develop personalized models of SI
prediction. Specifically, among a population of youth at high-risk for suicidality, this study will use ecological
momentary assessment (EMA) to assess SI severity twice daily and collect continuous passive sensor data
from smartphones for 100 consecutive days. This project will map passively collected sensor data onto
variables that are empirically and theoretically linked to suicide risk, such as physical activity and mobility,
communication, and social interaction. This combination of daily ratings of SI severity and continuous passive
sensor data will provide the necessary data to develop personalized risk calculators that model each person’s
variability in SI severity as a function of passive sensor data. This study will further current conceptualizations
of suicide risk and prediction using advanced methodological and computational approaches, and provide
training in innovative methods that have the potential to predict SI risk in real-time, which is responsive to
Objectives 2.2 and 4.1 of NIMH’s Strategic Plan and holds tremendous promise for improving suicide
prevention efforts.
A.7。项目摘要/摘要
拟议的研究将利用主动和被动的门诊评估(AA)方法和机器
学会在青年临床样本中开发个性化的自杀想法(SI)预测模型
高危自杀。考虑到自杀目前是第二领先的,这项工作是及时且重要的
cause of death among youth in the U.S., and rates of SI and suicidal behavior have risen steadily over the past
20年。 SI是预测模型的关键目标,因为它是可识别,可靠且可修改的先行目标
自杀行为。开发可以有效预测SI的预测模型可能为即将到来的道路铺平道路
时间干预以峰值风险的精确时间提供,因此在发生自杀行为之前就可以防止自杀行为。
但是,尽管进行了数十年的研究,但我们准确预测SI的能力仍然很差,这可能是因为
自杀性是由于上下文化动态过程之间复杂的相互作用而产生的,而动态过程很大程度上是
特定于每个人。然而,大多数研究试图预测SI,这是一个非常特定于人的特定于人的
来自小组级数据的现象 - 可以充分地确定谁处于危险之中,但不能何时何时
有风险,这对于预防至关重要。为了提高我们对SI的理解和预测,这是必须的
采用适当说明个体可变性(即个性化或精确医学)的方法,
因此,模型适合该人,反之亦然。
门诊评估,移动计算和机器学习的进步允许收集,
管理和分析开发个性化风险预测所需的动态高分辨率数据
型号。我建议将这些方法论进步结合起来,以开发SI的个性化模型
特别是,在高风险自杀的年轻人中,本研究将使用生态学
瞬时评估(EMA)每天两次评估SI严重性并收集连续的被动传感器数据
连续100天从智能手机进行。该项目将被动收集的传感器数据映射到
迫切且理论上与自杀风险相关的变量,例如体育锻炼和流动性,
沟通和社交互动。 SI严重性和连续被动的每日评级的组合
传感器数据将提供必要的数据来开发个性化的风险计算器,以建模每个人的
SI严重程度的可变性是被动传感器数据的函数。这项研究将进一步当前概念化
使用先进的方法论和计算方法的自杀风险和预测,并提供
具有创新方法的培训,有可能实时预测SI风险,这对
NIMH战略计划的目标2.2和4.1,并具有改善自杀的巨大希望
预防努力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Craig Jeffrey Robb Sewall其他文献
Craig Jeffrey Robb Sewall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
哀牢山断裂带不明原因集群死亡点微观地质特征及地表空气CO2含量变化
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
哀牢山断裂带不明原因集群死亡点微观地质特征及地表空气CO2含量变化
- 批准号:42277196
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
南盘江流域次生林中树木死亡原因及其残体特征的研究
- 批准号:
- 批准年份:2020
- 资助金额:35 万元
- 项目类别:地区科学基金项目
梭梭与头状沙拐枣在极端环境的生存机制与死亡原因研究
- 批准号:31971731
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
APE1调控HMGB1的氧化还原状态介导免疫原性细胞死亡抑制导致宫颈癌免疫治疗抵抗的作用及机制研究
- 批准号:81902671
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
FEASible: Sensing Factors of Environment, Activity, and Sleep to Validate Metabolic Health Burden Among Latina Women
可行:通过环境、活动和睡眠的传感因素来验证拉丁裔女性的代谢健康负担
- 批准号:
10639447 - 财政年份:2023
- 资助金额:
$ 3.52万 - 项目类别:
Development and testing of a smartphone-delivered climate adaptation and IPV and related stress intervention for residents of informal settlements in Kenya using ecological momentary approaches
使用生态瞬时方法为肯尼亚非正规住区居民开发和测试智能手机提供的气候适应和 IPV 及相关压力干预措施
- 批准号:
10740006 - 财政年份:2023
- 资助金额:
$ 3.52万 - 项目类别:
Development and implementation of a pediatric AI multi-modal digital stethoscope and respiratory surveillance system in South Africa
在南非开发和实施儿科人工智能多模态数字听诊器和呼吸监测系统
- 批准号:
10740943 - 财政年份:2023
- 资助金额:
$ 3.52万 - 项目类别:
A sensor-controlled digital game-based approach to improve self-care behaviors among adults diagnosed with hypertension in a Native American community
一种基于传感器控制的数字游戏方法,用于改善美洲原住民社区中被诊断患有高血压的成年人的自我保健行为
- 批准号:
10406061 - 财政年份:2022
- 资助金额:
$ 3.52万 - 项目类别: