Dynamic allosteric communication within nonribosomal peptide synthetase cyclization domains
非核糖体肽合成酶环化域内的动态变构通讯
基本信息
- 批准号:10387089
- 负责人:
- 金额:$ 10.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAnabolismAntibioticsAntineoplastic AgentsArchitectureBacitracinBindingBinding SitesBiologicalBiological AssayBleomycinChemicalsCholeraCommunicationComplexComputing MethodologiesCrystallographyCyclizationDrug DesignEngineeringEnzymesEscherichia coliGene ActivationImmunosuppressive AgentsLigand BindingModificationMolecularMycobacterium tuberculosisNatural ProductsNuclear Magnetic ResonancePharmacologic SubstancePlagueProteinsRegulationResearchSirolimusStructureSystemTertiary Protein StructureTherapeuticTuberculosisUrinary tract infectionUropathogenic E. coliVibrio choleraeVirulenceYersinia pestisantitumor agentenzyme mechanismimprovedinterestintermolecular interactionmicrobialnovelpathogenpeptide synthaseresponse
项目摘要
Project Summary
Biological activity, ranging from gene activation to enzyme regulation, occurs through molecular
interactions, and its regulation can be described as a redistribution of intermolecular interactions
through chemical modifications or ligand binding. Unfortunately, when a protein interacts with
two partners through remote binding sites, molecular mechanisms that would explain how
changes within proteins alter the communication between proteins are often elusive. This
challenge limits designing drugs that could alter interactions to rescue abnormal biological
activity. The conundrum also applies to microbial enzymatic factories called nonribosomal
peptide synthetases (NRPSs). NRPSs use contiguous protein domains to incorporate and
assemble simple substrates into complex products in an assembly line fashion. The products
are often valuable therapeutics, including antibiotics (bacitracin), antitumor agents
(bleomycin), and immunosuppressants (rapamycin), but others confer virulence to pathogens
(E. coli, V. cholerae, Y. pestis). NRPSs are the focus of much interest because engineering
them to incorporate different substrates could produce novel pharmaceuticals. However, like
assembly lines in factories, NRPSs are not static, and their domains interact transiently in a
dynamic architecture. Thus, understanding the molecular mechanisms of NRPSs, and
potentially engineering them, is tantamount to solving a dynamic, multi-dimensional puzzle.
Notably, it is unknown how substrates interact with some domains, and how these interactions,
in turn, promote communication between several partner domains, which is the situation we
described above for proteins. We found that structural dynamics within domains respond to
substrates to promote interactions between domains and that they couple remote binding sites
and enzymatic active sites. That is, dynamics contain keys to understanding both substrate
recognition and remote communication. This proposal aims to provide a molecular description of
the dynamics within critical NRPS domains and reveal its function in substrate and partner
domain recognition. We will use nuclear magnetic resonance, which can describe
experimentally dynamics at the atomic-level, to describe dynamic responses when domains
interact with each other, and with substrates as they do during synthesis. The studies are
supplemented with functional assays, computational methods, and crystallography, and will
answer longstanding questions about protein communication, enzyme mechanisms, and remote
communication within proteins. The results will provide a basis to engineer exogenous substrate
recognition into NRPSs, a condition for producing new pharmaceuticals through NRPS
reprogramming.
项目概要
从基因激活到酶调节的生物活性通过分子发生
相互作用及其调节可以描述为分子间相互作用的重新分配
通过化学修饰或配体结合。不幸的是,当蛋白质与
两个伙伴通过远程结合位点,分子机制可以解释如何
蛋白质内部的变化会改变蛋白质之间的通讯,这通常是难以捉摸的。这
挑战限制了设计可以改变相互作用以拯救异常生物的药物
活动。这个难题也适用于称为非核糖体的微生物酶工厂
肽合成酶(NRPS)。 NRPS 使用连续的蛋白质结构域来整合和
以装配线方式将简单的基材组装成复杂的产品。产品
通常是有价值的治疗药物,包括抗生素(杆菌肽)、抗肿瘤药物
(博莱霉素)和免疫抑制剂(雷帕霉素),但其他药物赋予病原体毒力
(大肠杆菌、霍乱弧菌、鼠疫耶尔森氏菌)。 NRPS 是人们广泛关注的焦点,因为工程
它们结合不同的底物可以生产新型药物。然而,就像
工厂的装配线、NRPS 不是静态的,它们的域在瞬态中相互作用
动态架构。因此,了解 NRPS 的分子机制,以及
对它们进行潜在的设计,无异于解决一个动态的、多维的难题。
值得注意的是,目前尚不清楚底物如何与某些域相互作用,以及这些相互作用如何,
反过来,促进几个合作伙伴域之间的沟通,这就是我们的情况
上面对蛋白质进行了描述。我们发现域内的结构动力学响应
促进域之间相互作用的底物,并且它们耦合远程结合位点
和酶活性位点。也就是说,动力学包含理解两种底物的关键
识别和远程通信。该提案旨在提供分子描述
关键 NRPS 域内的动态并揭示其在底物和伴侣中的功能
域识别。我们将使用核磁共振,它可以描述
在原子水平上进行实验动力学,以描述域时的动态响应
相互作用,以及与合成过程中的底物相互作用。这些研究是
辅以功能测定、计算方法和晶体学,并将
回答有关蛋白质通讯、酶机制和远程控制等长期存在的问题
蛋白质内部的通讯。研究结果将为外源底物的设计提供依据
获得 NRPS 认可,这是通过 NRPS 生产新药品的条件
重新编程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dominique Pascal Frueh其他文献
Dominique Pascal Frueh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dominique Pascal Frueh', 18)}}的其他基金
NMR studies of heterocyclization and epimerization in yersiniabactin synthesis
耶尔森菌素合成中杂环化和差向异构化的 NMR 研究
- 批准号:
8421252 - 财政年份:2013
- 资助金额:
$ 10.43万 - 项目类别:
NMR studies of heterocyclization and epimerization in yersiniabactin synthesis
耶尔森菌素合成中杂环化和差向异构化的 NMR 研究
- 批准号:
8667485 - 财政年份:2013
- 资助金额:
$ 10.43万 - 项目类别:
Dynamic allosteric communication within nonribosomal peptide synthetase cyclization domains
非核糖体肽合成酶环化域内的动态变构通讯
- 批准号:
10569523 - 财政年份:2013
- 资助金额:
$ 10.43万 - 项目类别:
Dynamic allosteric communication within nonribosomal peptide synthetase cyclization domains
非核糖体肽合成酶环化域内的动态变构通讯
- 批准号:
10358654 - 财政年份:2013
- 资助金额:
$ 10.43万 - 项目类别:
NMR studies of heterocyclization and epimerization in yersiniabactin synthesis
耶尔森菌素合成中杂环化和差向异构化的 NMR 研究
- 批准号:
9066739 - 财政年份:2013
- 资助金额:
$ 10.43万 - 项目类别:
相似国自然基金
链病毒定(Streptovirudin)结构单元—二氢尿嘧啶生物合成机制的研究
- 批准号:31900051
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
萘醌-氧吲哚类生物碱Coprisidins的生物合成机制研究
- 批准号:31900043
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
村山醌生物合成及其骨架重排机制的研究
- 批准号:31870026
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
深海链霉菌 Streptomyces atratus SCSIO ZH16中新颖环肽化合物atramycin的代谢激活及其生物合成机制
- 批准号:31870046
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
蒽醌骈合型烯二炔天然产物的生物合成途径研究
- 批准号:81872779
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
Structural and functional characterization of glycosyltransferases in the Campylobacter concisus N-linked glycoconjugate biosynthetic pathway
弯曲杆菌 N 连接糖复合物生物合成途径中糖基转移酶的结构和功能表征
- 批准号:
10607139 - 财政年份:2023
- 资助金额:
$ 10.43万 - 项目类别:
Defining structure and function of GT-A fold enzymes in bacterial glycan assembly
定义细菌聚糖组装中 GT-A 折叠酶的结构和功能
- 批准号:
10752020 - 财政年份:2023
- 资助金额:
$ 10.43万 - 项目类别:
Structure function investigations of radical transfer and disulfide exchange in a class Ia ribonucleotide reductase
Ia类核糖核苷酸还原酶自由基转移和二硫键交换的结构功能研究
- 批准号:
10542661 - 财政年份:2022
- 资助金额:
$ 10.43万 - 项目类别:
Spectroscopic Characterization of Oxygen Intermediates in Non-heme and Heme Iron Enzymes
非血红素和血红素铁酶中氧中间体的光谱表征
- 批准号:
10396809 - 财政年份:2022
- 资助金额:
$ 10.43万 - 项目类别:
Catalysis and inhibition of chitin synthesis from pathogenic fungi
病原真菌几丁质合成的催化和抑制
- 批准号:
10640198 - 财政年份:2022
- 资助金额:
$ 10.43万 - 项目类别: