Regulation of re-replication in mammalian cells
哺乳动物细胞再复制的调节
基本信息
- 批准号:10387262
- 负责人:
- 金额:$ 15.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:Cell CycleCellsCharacteristicsChromatinDNADNA Double Strand BreakDNA RepairDNA biosynthesisDevelopmentDouble Strand Break RepairEnsureEnzymesEpigenetic ProcessEukaryotaExhibitsG1 PhaseGene SilencingGenerationsGenesGenomeGenomic InstabilityGenomic SegmentGenomicsGoalsHistonesLeadLicensingMalignant - descriptorMalignant NeoplasmsMammalian CellMethyltransferaseModelingMolecularNatureNuclearPlayProcessProteinsRegulationReplication InitiationReplication OriginRoleS PhaseSiteStochastic ProcessesTestinganti-cancer therapeuticcancer cellcell typecytotoxicdesigngene repressionhistone methyltransferaseinnovationwhole genome
项目摘要
Project Summary
Mammalian cells have evolved multiple non-overlapping mechanisms to ensure that DNA replication initiates
from origins of replications once and only once in each division cycle; loss of control over these mechanisms
induces genomic instability, an important driver of malignant transformation. Increasing evidence suggests that
origin utilization and activation in higher eukaryotes is influenced by epigenetic factors, but exact mechanisms
are largely undefined. Our long-term goals are to elucidate the underpinning mechanisms that control replication
initiation in mammalian cells and to understand how perturbations of these mechanisms provokes genomic
instability. The histone methyltransferase SET8 is emerging as a key regulator of replication initiation in
mammalian cells through its mono-methyltransferase activity on histone H4K20. The cell cycle regulated enzyme
is essential for origin licensing in G1 phase of the cell cycle, but is proteolytically degraded in S-phase; blocking
this step triggers reiterative replication initiation within the same cell cycle or re-replication. Both SET8 and
H4K20me, however, are also involved in transcriptional repression and in the repair of DNA double strand breaks
(DSBs), but whether these seemingly independent activities play a role in replication initiation or re-replication is
not known. Most importantly, little to nothing is known about the nature or characteristics of the re-replication
products that accumulate in cells with defective SET8 degradation, nor is there information on where in the
genome re-replication occurs or if there are certain genomic regions that are more prone to re-replication
induction. Our new results show that re-replication resulting from defective SET8 degradation is not a stochastic
process with few genomic sites exhibit large and significant copy number gains, reminiscent of genomic
amplifications that are seen in cancer cells. Additional preliminary studies suggest that re-replication may
originate from DNA double strand breaks (DSBs) that may spontaneously arise during replication, and requires
the activity of genes involved both in transcriptional silencing and in DSB repair. Our innovative preliminary
studies and experimental approaches are designed to thoroughly examine this alternative model of re-replication
induction. Aim 1 we will determine the magnitude (copy number gains) and genomic distribution of the re-
replicated DNA in cells with defective SET8 degradation and following the induction of DSBs. We will also test if
these parameters vary in different cancer cell types and in cancer vs. non-cancer cells. Aim 2 will determine the
chromatin occupancy of aberrantly stabilized SET8 and methylated H4K20 in cells with defective SET8
degradation, and whether these overlap with regions of re-replicated DNA. Aim 3 will define the role of
transcriptional repression and DSB repair proteins in re-replication induction. The successful execution of the
proposed aims promises to increase our understanding of the mechanisms regulating replication initiation in
mammalian cells, and lead to a better understanding of how perturbations of these mechanisms provokes
genomic instability.
项目摘要
哺乳动物细胞已经发展出多种非重叠机制,以确保DNA复制启动
从复制的起源一次,在每个分区周期中仅一次;失去对这些机制的控制
诱导基因组不稳定性,这是恶性转化的重要驱动力。越来越多的证据表明
较高的真核生物中的起源利用和激活受表观遗传因素的影响,但是确切的机制
在很大程度上不确定。我们的长期目标是阐明控制复制的基础机制
在哺乳动物细胞中的启动,并了解这些机制的扰动如何引起基因组
不稳定。组蛋白甲基转移酶SET8正在成为复制起始的关键调节剂
哺乳动物细胞通过其单甲基转移酶在组蛋白H4K20上的活性。细胞周期调节的酶
对于细胞周期的G1阶段中的起源许可是必不可少的,但在S期中蛋白水解降解。阻塞
此步骤触发在同一细胞周期或重新复制中的重复复制起始。 set8和
然而,H4K20Me也参与转录抑制和DNA双链断裂的修复
(DSB),但是这些看似独立的活动在复制启动还是重复复制中起作用
不知道。最重要的是,重新复制的性质或特征几乎一无所知
积累有缺陷的set8降解的细胞中的产品,也没有有关在哪里
基因组重新复制发生,或者是否有某些基因组区域更容易重新复制
就职。我们的新结果表明,由于set8降级而导致的重新复制不是随机的
很少有基因组位点的过程表现出大而显着的拷贝数增长,让人联想到基因组
在癌细胞中看到的扩增。其他初步研究表明,重新复制可能
起源于DNA双链断裂(DSB),可能在复制过程中自发出现,并且需要
转录沉默和DSB修复中涉及的基因活性。我们的创新初步
研究和实验方法旨在彻底检查这种重新复制的替代模型
就职。 AIM 1我们将确定重复的幅度(拷贝数增长)和基因组分布
在DSBS诱导后,在有缺陷的set8降解的细胞中复制的DNA。我们还将测试是否
这些参数在不同的癌细胞类型和癌症与非癌细胞中有所不同。 AIM 2将确定
异常稳定的set8和甲基化的H4K20的染色质占有率在有缺陷的细胞中
降解,以及这些是否与重新复制的DNA区域重叠。 AIM 3将定义
转录抑制和DSB修复蛋白重新诱导。成功执行
拟议的目标有望增加我们对调节复制启动机制的理解
哺乳动物细胞,并可以更好地理解这些机制的扰动
基因组不稳定性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAREK A. ABBAS其他文献
TAREK A. ABBAS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAREK A. ABBAS', 18)}}的其他基金
The Role of CRL4-Cdt2 E3 Ubiquitin Ligase in Genomic Stability and Cancer
CRL4-Cdt2 E3 泛素连接酶在基因组稳定性和癌症中的作用
- 批准号:
7895195 - 财政年份:2010
- 资助金额:
$ 15.9万 - 项目类别:
The Role of CRL4-Cdt2 E3 Ubiquitin Ligase in Genomic Stability and Cancer
CRL4-Cdt2 E3 泛素连接酶在基因组稳定性和癌症中的作用
- 批准号:
8066396 - 财政年份:2010
- 资助金额:
$ 15.9万 - 项目类别:
The Role of CRL4-Cdt2 E3 Ubiquitin Ligase in Genomic Stability and Cancer
CRL4-Cdt2 E3 泛素连接酶在基因组稳定性和癌症中的作用
- 批准号:
8525706 - 财政年份:2010
- 资助金额:
$ 15.9万 - 项目类别:
The Role of CRL4-Cdt2 E3 Ubiquitin Ligase in Genomic Stability and Cancer
CRL4-Cdt2 E3 泛素连接酶在基因组稳定性和癌症中的作用
- 批准号:
8545701 - 财政年份:2010
- 资助金额:
$ 15.9万 - 项目类别:
The Role of CRL4-Cdt2 E3 Ubiquitin Ligase in Genomic Stability and Cancer
CRL4-Cdt2 E3 泛素连接酶在基因组稳定性和癌症中的作用
- 批准号:
8721855 - 财政年份:2010
- 资助金额:
$ 15.9万 - 项目类别:
相似国自然基金
细胞周期调控蛋白UVI4调控番茄果皮发育特征的分子机制
- 批准号:31872951
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
基于细胞周期变化特征的染色质三维结构模型
- 批准号:31501081
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
景天科植物三种无性苗的形态发生
- 批准号:31370214
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
Cdk5对垂体瘤VEGF特征性表达的调控及其在垂体瘤信号转导通路中的作用及机制研究
- 批准号:31200796
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
ORC基因表达、结构特征在调控血管平滑肌细胞增殖中的分子机制
- 批准号:30470727
- 批准年份:2004
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 15.9万 - 项目类别:
Host Defense Small Molecule Development for COVID-19 Treatment by Targeting Lysosome
通过靶向溶酶体治疗 COVID-19 的宿主防御小分子开发
- 批准号:
10735492 - 财政年份:2023
- 资助金额:
$ 15.9万 - 项目类别:
High throughput screening and drug discovery for antagonists of the Ebola VP40 protein assembly
埃博拉 VP40 蛋白组装拮抗剂的高通量筛选和药物发现
- 批准号:
10760573 - 财政年份:2023
- 资助金额:
$ 15.9万 - 项目类别: