Understanding the Role of the Non-coding Variant of MYH7b in the Regulation of Beta Myosin Heavy Chain
了解 MYH7b 非编码变体在β肌球蛋白重链调节中的作用
基本信息
- 批准号:10383133
- 负责人:
- 金额:$ 2.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2021-12-06
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisAddressAffectAffinity ChromatographyAlternative SplicingAntisense OligonucleotidesBindingBinding ProteinsBiologicalBiologyBrainCardiacCardiac DeathCardiac MyocytesCardiac MyosinsCardiovascular DiseasesCause of DeathCessation of lifeChemicalsContractsDiagnosisDown-RegulationEnhancersEquilibriumExonsFamilyFocal Adhesion Kinase 1FoundationsGene ExpressionGenesGenetic EpistasisGenetic TranscriptionHeadHeartHeart DiseasesHeart failureHumanHuman Genome ProjectImmunoprecipitationInterventionIntronsKineticsLeadMammalsMicroRNAsMicrofilamentsMolecularMolecular MotorsMotorMuscle ContractionMuscle ProteinsMuscle SpindlesMyosin ATPaseMyosin Heavy ChainsMyosin Phosphatase PathwayNonmuscle Myosin Type IIANonmuscle Myosin Type IIBNonsense CodonNucleic AcidsOperative Surgical ProceduresOrganPathway interactionsPatientsPatternPersonal CommunicationPharmaceutical PreparationsPhosphotransferasesProtein IsoformsProteinsProtocols documentationRNARegulationResearchResearch Project GrantsRodRoleSeriesSkeletal MuscleStriated MusclesTherapeuticThick FilamentTissuesTranscriptTranscriptional RegulationUnited StatesUntranslated RNAVariantbasebeta-Myosinenhancing factorexon skippingexperimental studygenetic manipulationheart functionhuman old age (65+)induced pluripotent stem cellknock-downnon-muscle myosin heavy chain-Bnovelorbit muscleoverexpressionpreservationsmall moleculetranscription factortranscriptome sequencing
项目摘要
PROJECT SUMMARY
Cardiovascular disease accounted for 1 in 3 deaths in the USA in 2016 and was the leading cause of death
worldwide (AHA, 2019). Treatment is limited to symptomatic interventions through small molecule drugs or
surgery, but these do not address the underlying molecular causes of heart failure. One such mechanism is the
dysregulation of myosin heavy chain isoform expression. Myosin heavy chains (MyHC) are the motor proteins
that convert chemical energy into kinetic energy to produce the force necessary for muscle contraction. In the
heart, three MyHC isoforms are expressed: a-MyHC, b-MyHC, and Myosin Heavy Chain 7b (MYH7b). However,
MYH7b is not translated to protein due to a post-transcriptional exon-skipping mechanism that produces a
premature stop codon. At the protein level, a-MyHC and b-MyHC exist in a carefully controlled ratio of 10%
a-MyHC to 90% b-MyHC. In late-stage heart diseases, the expression of a-MyHC and b-MyHC is dysregulated;
the proportion of a-MyHC is reduced to undetectable levels, while b-MyHC expression increases to essentially
100%. This is thought to be a compensatory mechanism to conserve energy, as b-MyHC has a slower ATP-
turnover rate; however, it compromises the contractile function of the heart and can thus lead to cardiac death.
The mechanism behind this transcriptional shift is not understood. We have recently discovered that expression
levels of MYH7b RNA and b-MyHC (both RNA and protein) positively correlate, and that changes in MYH7b
expression always precede those of b-MyHC. Furthermore, knockdown of MYH7b by anti-sense
oligonucleotides causes a decrease in b-MyHC expression. We have performed RNA-sequencing analysis in
cardiomyocytes differentiated from human-derived induced pluripotent stem cells with reduced levels of MYH7b
RNA. This lead to a discovery of a proposed pathway where MYH7b controls the expression of focal adhesion
kinase, leading to a correlating change in the transcription of TEAD3, a transcription enhancer factor that
enhances the expression of b-MyHC. We will validate this pathway through a series of rescue experiments.
Then we will determine the epistasis of the pathway using genetic manipulations to determine where each gene
resides in the pathway. Finally, we want to fully define this pathway responsible for controlling the transcription
of b-MyHC by identifying the molecular partners of MYH7b, using RNA-based affinity purification. We will use a
comprehensive approach to identify both protein and nucleic-acid interactions, thus fully defining the interactome
of MYH7b. This research will have a large impact on the field of cardiac biology, as it will help solve the age-old
puzzle of MyHC transcriptional control in the heart. I hypothesize that MYH7b is acting as a long non-coding
RNA (lncMYH7b) in the heart to regulate the transcription of b-MyHC through controlling levels of focal adhesion
kinase and TEAD3. In Aim 1 I will validate and define this pathway. In Aim 2, I will identify the molecular partners
of lncMYH7b.
项目概要
2016年,心血管疾病占美国死亡人数的三分之一,并且是导致死亡的主要原因
全球(AHA,2019)。治疗仅限于通过小分子药物或药物进行对症干预
手术,但这些并不能解决心力衰竭的根本分子原因。其中一种机制是
肌球蛋白重链亚型表达失调。肌球蛋白重链 (MyHC) 是运动蛋白
将化学能转化为动能,产生肌肉收缩所需的力。在
在心脏中,表达三种 MyHC 同工型:a-MyHC、b-MyHC 和肌球蛋白重链 7b (MYH7b)。然而,
由于转录后外显子跳跃机制会产生
过早终止密码子。在蛋白质水平上,a-MyHC 和 b-MyHC 的比例严格控制在 10%
a-MyHC 至 90% b-MyHC。在晚期心脏病中,a-MyHC 和 b-MyHC 的表达失调;
a-MyHC 的比例降低至不可检测的水平,而 b-MyHC 表达增加至基本上
100%。这被认为是一种节省能量的补偿机制,因为 b-MyHC 的 ATP 速度较慢
周转率;然而,它会损害心脏的收缩功能,从而导致心源性死亡。
这种转录转变背后的机制尚不清楚。我们最近发现了这个表达
MYH7b RNA 和 b-MyHC(RNA 和蛋白质)的水平呈正相关,并且 MYH7b 中的变化
表达始终先于 b-MyHC 的表达。此外,通过反义基因敲低 MYH7b
寡核苷酸会导致 b-MyHC 表达减少。我们进行了RNA测序分析
从人源诱导多能干细胞分化而来的心肌细胞,MYH7b 水平降低
核糖核酸。这导致了 MYH7b 控制粘着斑表达的拟议途径的发现
激酶,导致 TEAD3 转录的相关变化,TEAD3 是一种转录增强因子,
增强 b-MyHC 的表达。我们将通过一系列救援实验来验证这条途径。
然后我们将使用基因操作来确定该途径的上位性,以确定每个基因的位置
驻留在路径中。最后,我们想要完全定义这条负责控制转录的途径
通过使用基于 RNA 的亲和纯化鉴定 MYH7b 的分子伴侣,对 b-MyHC 进行分析。我们将使用一个
识别蛋白质和核酸相互作用的综合方法,从而完全定义相互作用组
MYH7b。这项研究将对心脏生物学领域产生巨大影响,因为它将有助于解决古老的问题
心脏 MyHC 转录控制之谜。我假设 MYH7b 充当长非编码
心脏中的 RNA (lncMYH7b) 通过控制粘着斑水平来调节 b-MyHC 的转录
激酶和 TEAD3。在目标 1 中,我将验证并定义这条路径。在目标 2 中,我将确定分子伙伴
lncMYH7b。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lindsey Broadwell其他文献
Lindsey Broadwell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Inhibition or evasion of P-glycoprotein-mediated drug transport
抑制或逃避 P-糖蛋白介导的药物转运
- 批准号:
10568723 - 财政年份:2023
- 资助金额:
$ 2.39万 - 项目类别:
Targeting Energetics to Improve Outcomes in Hypertrophic Cardiomyopathy
靶向能量药物以改善肥厚型心肌病的预后
- 批准号:
10687401 - 财政年份:2022
- 资助金额:
$ 2.39万 - 项目类别:
Epigenetic regulatory mechanisms and therapeutic opportunities in endometriosis
子宫内膜异位症的表观遗传调控机制和治疗机会
- 批准号:
10295909 - 财政年份:2021
- 资助金额:
$ 2.39万 - 项目类别:
Role of Ectonucleotidase in Voiding Function and Dysfunction
外切核苷酸酶在排尿功能和功能障碍中的作用
- 批准号:
10292995 - 财政年份:2021
- 资助金额:
$ 2.39万 - 项目类别:
Epigenetic regulatory mechanisms and therapeutic opportunities in endometriosis
子宫内膜异位症的表观遗传调控机制和治疗机会
- 批准号:
10469532 - 财政年份:2021
- 资助金额:
$ 2.39万 - 项目类别: