Molecular Mechanisms Governing Vascular Cell Function and Phenotype in Health and Disease
健康和疾病中控制血管细胞功能和表型的分子机制
基本信息
- 批准号:10380102
- 负责人:
- 金额:$ 74.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Adaptor Signaling ProteinApolipoprotein EAreaArterial Fatty StreakArteriesAtherosclerosisAttenuatedBiochemicalBlood VesselsCardiovascular DiseasesCause of DeathCell Culture TechniquesCell physiologyCellsCholesterolChronicComplementCoronary heart diseaseDataDevelopmentDietDiseaseEndocytosisEndothelial CellsEndotheliumFamilyFoam CellsFoundationsGene ExpressionGenesGoalsHealthHeart DiseasesHomeostasisHumanImmuneIn VitroInfiltrationInflammationInflammatoryKnockout MiceLaboratoriesLesionLightMediatingMesenchymalMissionModelingMolecularMolecular TargetMorbidity - disease rateMouse StrainsMusMutant Strains MiceMyeloid CellsOsteogenesisPTPRC genePathogenesisPathologicPhenotypePlayProcessProteinsReagentResolutionRoleSignal PathwaySignal TransductionSmall Interfering RNASmooth Muscle MyocytesSourceStimulusTestingTherapeuticTherapeutic EffectTimeTransgenic OrganismsUbiquitinationUnited States National Institutes of HealthVascular DiseasesVascular Smooth MuscleWorkarterial stiffnessatherogenesiscalcificationcell regenerationendothelial dysfunctionendothelial repairepsinepsin 1experimental studyin vitro Modelinjuredinjury and repairinnovationinsightmortalitymultidisciplinarynanoparticlenanoparticle deliverynext generationnovelnovel therapeuticsosteogenicoverexpressionoxidized low density lipoproteinpluripotencypreventresponsesiRNA deliverytargeted treatmenttherapeutic targettooltranscription factortranscriptome sequencingtransdifferentiationtranslational potentialvascular inflammation
项目摘要
PROJECT SUMMARY/ABSTRACT
Endothelial dysfunction resulting from chronic inflammation and elevated circulating cholesterol promotes the
formation of plaques in the sub-endothelium of major arteries causing coronary heart disease—a leading
cause of morbidity and mortality worldwide. Repair of the injured endothelium holds great promise to treat
heart disease; however, endogenous endothelial cell (EC) regeneration is an inefficient process. The ability to
restore patency of the arterial endothelium would provide a significant therapeutic advancement. Because
vascular smooth muscle cells (VSMCs) constitute the majority of cells in the arterial wall and are capable of
phenotypic plasticity in response to pathophysiological stimuli, these cells represent an appealing source of
functional endothelial cells. Unraveling the molecular mechanisms and signaling pathways that govern trans-
differentiation of VSMCs into ECs to mend the injured endothelium would establish a novel treatment paradigm
for coronary heart disease. Our long-term goal is to discover new molecules and signaling pathways that
facilitate VSMC-to-endothelial transition (MEndoT). Our laboratory has identified and characterized a family of
evolutionarily-conserved endocytic adaptor proteins called epsins, which have crucial roles in coordinating
endocytosis and signal transduction. Our studies show that loss of epsins 1 and 2 in ECs and myeloid cells
reduces vascular inflammation and prevents plaque initiation and progression. To further assess the
therapeutic effects of targeting epsins in cells that drive lesion progression as well as plaque composition and
stability, we will use recently created disease-specific mice harboring VSMC-specific deficiency of these
epsins. We propose to interrogate the function of VSMC epsin proteins in these processes and establish that
therapeutic targeting of these proteins will promote beneficial VSMC phenotype switching. So far, our
preliminary studies indicate that ApoE-/- mice with a deficiency in VSMC epsins have a significant reduction in
plaque size, enhanced plaque stability (including an increase in fibrous cap area and ACTA2+ cells within the
cap), a reduction in the number of infiltrating cells (CD45+ immune and inflammatory cells and CD68+ foam
cells), and a prominent decrease in vascular stiffness and calcification. In addition, RNA-seq analyses show
that Klf4, the pluripotent transcriptional factor controlling phenotypic switching of VSMCs, is downregulated by
epsin loss, as is oxLDL-triggered Runx2 ubiquitination and degradation. In light of these findings, we will
investigate the following Specific Aims using unique mutant mice, in vitro models, and novel reagents: 1) To
determine the molecular mechanisms by which epsins regulate phenotype switching and mesenchymal-to-
endothelial differentiation, 2) To determine the molecular mechanisms by which epsins regulate VSMC
osteogenesis and promote arterial stiffness, and 3) To determine the therapeutic potential of targeting epsins
for atheroma formation and resolution. If fruitful, the proposed study will complement our prior work and
strengthen the concept that epsin proteins may serve as a potent therapeutic target for coronary heart disease.
项目概要/摘要
慢性炎症和循环胆固醇升高引起的内皮功能障碍会促进
导致冠心病的主要动脉内皮下斑块的形成
修复受损的内皮细胞具有巨大的治疗前景。
心脏病;然而,内源性内皮细胞(EC)再生是一个低效的过程。
恢复动脉内皮的通畅将提供显着的治疗进展。
血管平滑肌细胞 (VSMC) 构成动脉壁中的大部分细胞,能够
响应病理生理刺激的表型可塑性,这些细胞代表了一个有吸引力的来源
揭示功能性内皮细胞的分子机制和信号通路。
将 VSMC 分化为 EC 以修复受损的内皮细胞将建立一种新的治疗模式
我们的长期目标是发现新的分子和信号通路
促进 VSMC 向内皮细胞的转变 (MEndoT) 我们的实验室已鉴定并表征了一系列的特征。
进化上保守的内吞接头蛋白,称为 epsins,在协调
我们的研究表明 EC 和骨髓细胞中 Epsins 1 和 2 的丢失。
减少血管炎症并防止斑块的发生和进展。
靶向驱动病变进展以及斑块组成的细胞中的epsins的治疗效果
稳定性,我们将使用最近创建的具有 VSMC 特异性缺陷的疾病特异性小鼠
我们建议探究 VSMC epsin 蛋白在这些过程中的功能,并确定这一点。
靶向这些蛋白质将促进有益的治疗性 VSMC 表型转换。
初步研究表明,VSMC epsins 缺陷的 ApoE-/- 小鼠的
斑块大小,增强斑块稳定性(包括纤维帽面积和斑块内 ACTA2+ 细胞的增加)
cap),浸润细胞(CD45+免疫和炎症细胞以及CD68+泡沫)数量减少
此外,RNA-seq 分析显示血管硬度和钙化显着减少。
Klf4,控制 VSMC 表型转换的多能转录因子,被下调
epsin 损失,以及 oxLDL 触发的 Runx2 泛素化和降解。根据这些发现,我们将
使用独特的突变小鼠、体外模型和新型试剂研究以下具体目标:1)
确定epsins调节表型转换和间质转化的分子机制
内皮分化,2) 确定epsins调节VSMC的分子机制
成骨并促进动脉僵硬度,3) 确定靶向 epsins 的治疗潜力
如果取得成果,拟议的研究将补充我们之前的工作和解决方案。
强化了epsin蛋白可能作为冠心病有效治疗靶点的概念。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hong Chen其他文献
Hong Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hong Chen', 18)}}的其他基金
Role of PXR in drug-elicited cardiovascular disease
PXR 在药物引起的心血管疾病中的作用
- 批准号:
10576675 - 财政年份:2022
- 资助金额:
$ 74.34万 - 项目类别:
Sonobiopsy for Noninvasive Genetic Evaluation of Glioblastoma Patients
声活检对胶质母细胞瘤患者进行无创基因评估
- 批准号:
10564014 - 财政年份:2022
- 资助金额:
$ 74.34万 - 项目类别:
The Role of Adaptor Protein Disabled-2 in Maintaining Endothelial Cell Function in Atherosclerosis
接头蛋白Disabled-2在维持动脉粥样硬化内皮细胞功能中的作用
- 批准号:
10532247 - 财政年份:2021
- 资助金额:
$ 74.34万 - 项目类别:
iSonogenetics for incisionless cell-type-specific neuromodulation of non-human primate brains
非人类灵长类大脑的无切口细胞类型特异性神经调节的声遗传学
- 批准号:
10655585 - 财政年份:2021
- 资助金额:
$ 74.34万 - 项目类别:
The Role of Adaptor Protein Disabled-2 in Maintaining Endothelial Cell Function in Atherosclerosis
接头蛋白Disabled-2在维持动脉粥样硬化内皮细胞功能中的作用
- 批准号:
10391797 - 财政年份:2021
- 资助金额:
$ 74.34万 - 项目类别:
iSonogenetics for incisionless cell-type-specific neuromodulation of non-human primate brains
非人类灵长类大脑的无切口细胞类型特异性神经调节的声遗传学
- 批准号:
10270569 - 财政年份:2021
- 资助金额:
$ 74.34万 - 项目类别:
Molecular Mechanisms Governing Vascular Cell Function and Phenotype in Health and Disease
健康和疾病中控制血管细胞功能和表型的分子机制
- 批准号:
10600825 - 财政年份:2021
- 资助金额:
$ 74.34万 - 项目类别:
Focused ultrasound-enabled brain tumor liquid biopsy (FUS-LBx) supplement
聚焦超声脑肿瘤液体活检 (FUS-LBx) 补充剂
- 批准号:
10448708 - 财政年份:2021
- 资助金额:
$ 74.34万 - 项目类别:
The role of signaling adaptor protein epsin in atherosclerosis
信号转接蛋白epsin在动脉粥样硬化中的作用
- 批准号:
10318660 - 财政年份:2020
- 资助金额:
$ 74.34万 - 项目类别:
相似国自然基金
载脂蛋白E模拟肽(6KApoEp)激活LRP1抑制CypA/NF-κB/MMP-9通路降低脑出血后病灶周围血脑屏障通透性
- 批准号:82260244
- 批准年份:2022
- 资助金额:32 万元
- 项目类别:地区科学基金项目
纳米脂质颗粒ApoE-rHDL靶向调控MDSCs重塑免疫微环境在胶质母细胞瘤免疫治疗中的作用与机制研究
- 批准号:81902529
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
载脂蛋白E对人干细胞稳态和衰老的调控作用及机制
- 批准号:81901433
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于多模态磁共振成像研究APOEε4和CLU交互作用对健康人海马的调控机制
- 批准号:81801686
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
SR蛋白在大脑脂代谢以及阿尔茨海默病病理过程中的作用机制研究
- 批准号:31871082
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Resolving the genetic interaction between DAB1 and APOE4 in Alzheimer's.
解决阿尔茨海默病中 DAB1 和 APOE4 之间的遗传相互作用。
- 批准号:
10591034 - 财政年份:2023
- 资助金额:
$ 74.34万 - 项目类别:
Molecular Mechanisms Governing Vascular Cell Function and Phenotype in Health and Disease
健康和疾病中控制血管细胞功能和表型的分子机制
- 批准号:
10600825 - 财政年份:2021
- 资助金额:
$ 74.34万 - 项目类别:
Fluid Shear Stress Signal Transduction in Endothelium
内皮细胞中的流体剪切应力信号转导
- 批准号:
7480202 - 财政年份:2001
- 资助金额:
$ 74.34万 - 项目类别:
Fluid Shear Stress Signal Transduction in Endothelium
内皮细胞中的流体剪切应力信号转导
- 批准号:
7270468 - 财政年份:2000
- 资助金额:
$ 74.34万 - 项目类别: