Expanding the fluorescent toolkit with non-canonical amino acids
使用非规范氨基酸扩展荧光工具包
基本信息
- 批准号:10377964
- 负责人:
- 金额:$ 34.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAddressAffectAffinityAlgorithm DesignAmino AcidsBinding ProteinsBiological AssayBiological ProcessBiologyBiosensorCell physiologyCellsCellular biologyComputing MethodologiesCoumarinsDataDevelopmentDissociationDyesEngineeringEnvironmentEquipmentEventExhibitsFluorescenceFluorescence Resonance Energy TransferFluorescent DyesFoundationsGoalsImageIndustrializationIonsLigand BindingLigandsMetalloproteinsMetalsMethodsModelingModernizationMolecular ConformationNatureOxyquinolinePeptidesPositioning AttributeProcessPropertyProtein EngineeringProteinsReporterReportingResearchScaffolding ProteinSideSiteSpecificityStimulusSurfaceSystemTechniquesTechnologyTranslatingTryptophanUmbelliferonesVertebral columnbasebiological systemsdesignfallsflexibilityfluorophorefunctional groupin vivoin vivo imaginginsightmetal chelatornovelprotein functionprotein protein interactionrational designresponsesensorsmall moleculespatiotemporalsuccesstool
项目摘要
PROJECT SUMMARY
Fluorescent methods have revolutionized our ability to study biological processes in cellular environments.
Despite an ever-expanding fluorescent toolkit, current methods are often limited in their ability to report on
dynamic events (e.g. protein-protein interactions, ligand binding, or the flux of metal ions in cells) that underpin
a majority of biological processes. The proposed research seeks to address this challenge by combining
computational protein design methods with technology allowing the cellular incorporation of fluorescent
non-canonical amino acids (fNCAAs) in proteins to generate novel classes of protein-based fluorescent
sensors with enhanced properties.
Our efforts will focus on developing new protein-based tools in which environmentally sensitive fluorophores—
those whose fluorescent properties are modified in response to changes in the surrounding environment—serve
as sensors of dynamic cellular processes. The ability to use such dyes to study dynamic processes in cellular
environments is often limited by the fact that fluorophores are generally attached to the surfaces of target
biomolecules. Alternatively, genetically encoded NCAAs are incorporated directly in the peptide backbone and
are therefore uniquely suited to respond to subtle changes within protein scaffolds. This suggests that fNCAAs
could serve as a platform for the creation of a novel class of protein-based sensors that dynamically respond to
a host of stimuli. However, achievement of this goal would require the ability to identify optimal sites of fNCAA
incorporation such that a well-defined change in fluorescence is expected without disrupting natural protein
function. We recently structurally characterized proteins containing an fNCAA with a 7-hydroxycoumarin (7-HC)
side chain that are responsive to protein-protein and protein-small molecule interactions. These data provide
insight into how changes in the environment surrounding the 7-HC fluorophore translate into changes in its
spectrum, thereby paving the way for the rational design of fluorescent biosensors of protein-small molecule
interactions. To explore this possibility, our recently obtained structural data will serve as inputs to computational
protein design methods that will be used to engineer new fluorescent sensors of small molecule metabolites. In
a second aim, we will develop highly selective metal ion sensors based on NCAAs containing either 7-HC or 8-
hydroxyquinoline (8-HQ) as a side chain. Again, computational protein design methods will be used to sculpt the
protein environments surrounding these NCAAs in order to generate new fluorescent proteins that are sensitive
to a wide range of biologically relevant metal concentrations and can be selectively produced in cells in a
spatiotemporally controlled fashion. Finally, because many existing fNCAAs exhibit fluorescent properties that
are not readily amenable to cell-based assays we will expand the toolkit of existing fluorescent NCAAs to include
those with enhanced properties that will facilitate the direct study of biological processes in cells.
项目摘要
荧光方法彻底改变了我们研究细胞环境中生物过程的能力。
尽管荧光工具包不断扩展,但当前方法的报告能力通常受到限制
动态事件(例如蛋白质 - 蛋白质相互作用,配体结合或细胞中金属离子的通量)
大多数生物过程。拟议的研究旨在通过结合来应对这一挑战
使用技术的计算蛋白设计方法允许荧光掺入细胞
蛋白质中的非典型氨基酸(FNCAA),以生成新的基于蛋白质的荧光类
具有增强性能的传感器。
我们的努力将着重于开发基于蛋白质的新工具,在这种工具中,对环境敏感的荧光团(
那些因周围环境变化而修改荧光性能的人 -
作为动态细胞过程的传感器。使用此类染料研究细胞中动态过程的能力
环境通常受到荧光团通常连接到目标表面的事实的限制
生物分子。或者,遗传编码的NCAA直接掺入胡椒骨架,并
因此,非常适合应对蛋白质支架内的细微变化。这表明fncaas
可以作为创建新型基于蛋白质的传感器的平台,这些传感器动态响应
一系列刺激。但是,实现这一目标将需要能够识别FNCAA的最佳站点
掺入使得荧光明确的变化无需破坏天然蛋白质
功能。我们最近在结构上表征了含有7-羟基丙酸酯(7-HC)的FNCAA的蛋白质
对蛋白质 - 蛋白质和蛋白质 - 小分子相互作用的副链链。这些数据提供
深入了解7-HC荧光团周围环境的变化如何转化为其变化
频谱,从而掩盖了蛋白质 - 小分子荧光生物传感器的合理设计的道路
互动。为了探索这种可能性,我们最近获得的结构数据将作为计算的输入
蛋白质设计方法将用于设计小分子代谢产物的新荧光传感器。
第二个目标,我们将基于含有7-HC或8--的NCAA开发高选择性的金属离子传感器
羟喹啉(8-hq)作为侧链。同样,计算蛋白设计方法将用于雕刻
这些NCAA周围的蛋白质环境,以生成敏感的新荧光蛋白
到广泛的生物学相关金属浓度,可以选择在A中产生细胞
时空控制的时尚。最后,因为许多现有的FNCAA暴露了荧光特性
不容易适合基于细胞的测定法,我们将扩展现有荧光NCAA的工具包
那些具有增强性能的人,可以促进细胞中生物过程的直接研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremy Mills其他文献
Jeremy Mills的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeremy Mills', 18)}}的其他基金
Expanding the fluorescent toolkit with non-canonical amino acids
使用非规范氨基酸扩展荧光工具包
- 批准号:
10599850 - 财政年份:2020
- 资助金额:
$ 34.09万 - 项目类别:
Genetically encodable epitopes to overcome size and resolution limits in cryo-EM
基因可编码表位可克服冷冻电镜中的尺寸和分辨率限制
- 批准号:
10017301 - 财政年份:2019
- 资助金额:
$ 34.09万 - 项目类别:
Computational Design of Unnatural Amino Acid Dependent Metalloproteins
非天然氨基酸依赖性金属蛋白的计算设计
- 批准号:
8391786 - 财政年份:2011
- 资助金额:
$ 34.09万 - 项目类别:
Computational Design of Unnatural Amino Acid Dependent Metalloproteins
非天然氨基酸依赖性金属蛋白的计算设计
- 批准号:
8202024 - 财政年份:2011
- 资助金额:
$ 34.09万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Programs for the Training and Advancement of the Next GENeration of Native Researchers in Genetics, Ethics and Society
下一代本土遗传学、伦理学和社会研究人员的培训和提升计划
- 批准号:
10841760 - 财政年份:2023
- 资助金额:
$ 34.09万 - 项目类别:
Integrative Analysis of Adaptive Information Processing and Learning-Dependent Circuit Reorganization in the Auditory System
听觉系统中自适应信息处理和学习依赖电路重组的综合分析
- 批准号:
10715925 - 财政年份:2023
- 资助金额:
$ 34.09万 - 项目类别:
Developing a U.S. National Cohort to Improve Virologic Suppression among Stimulant-using Men Living with HIV.
建立美国国家队列以改善使用兴奋剂的艾滋病毒男性感染者的病毒抑制。
- 批准号:
10675863 - 财政年份:2023
- 资助金额:
$ 34.09万 - 项目类别:
Assessing Clinical Effectiveness and Implementation of Worksite Sleep Health Coaching in Firefighters
评估消防员工作现场睡眠健康指导的临床效果和实施情况
- 批准号:
10585123 - 财政年份:2023
- 资助金额:
$ 34.09万 - 项目类别: